Homogenous Contracts for Heterogeneous Agents: Aligning Salesforce Composition and Compensation*

Øystein Daljord Sanjog Misra Harikesh S. Nair

Past versions: June 2012; Feb 2013. This version: Jan 2014

Abstract

Observed contracts in the real-world are often very simple, partly reflecting the constraints faced by contracting firms in making the contracts more complex. We focus on one such rigidity, the constraints faced by firms in fine-tuning contracts to the full distribution of heterogeneity of its employees. We explore the implication of these restrictions for the provision of incentives within the firm. Our application is to salesforce compensation, in which a firm maintains a salesforce to market its products. Consistent with ubiquitous real-world business practice, we assume the firm is restricted to fully or partially set uniform commissions across its agent pool. We show this implies an interaction between the composition of agent types in the contract and the compensation policy used to motivate them, leading to a “contractual externality” in the firm and generating gains to sorting. This paper explains how this contractual externality arises, discusses a practical approach to endogenize agents and incentives at a firm in its presence, and presents an empirical application to salesforce compensation contracts at a US Fortune 500 company that explores these considerations and assesses the gains from a salesforce architecture that sorts agents into divisions to balance firm-wide incentives. Empirically, we find the restriction to homogenous plans significantly reduces the payoffs of the firm relative to a fully heterogeneous plan when it is unable to optimize the composition of its agents. However, the firm's payoffs come very close to that of the fully heterogeneous plan when it can optimize both composition and compensation. Thus, in our empirical setting, the ability to choose agents mitigates the loss in incentives from the restriction to uniform contracts. We conjecture this may hold more broadly.

*Daljord: Graduate School of Business, Stanford University, daljord@stanford.edu; Misra: Anderson School of Management, UCLA, sanjog.misra@anderson.ucla.edu; Nair: Graduate School of Business, Stanford University, harikesh.nair@stanford.edu. We thank Guy Arie, Nick Bloom, Francine Lafontaine, Ed Lazear, Sridhar Moorthy, Paul Oyer, Michael Raith, Kathryn Shaw, Chuck Weinberg, Jeff Zwiebel; our discussant at the QME conference, Curtis Taylor; and Lanier Benkard and Ed Lazear in particular for their useful comments and suggestions. We also thank seminar participants at MIT-Sloan, Stanford-GSB, UBC-Saunder, UC-Davis-GSM, UT-Austin-McCombs, UToronto-Rotman, and at the 2012 IOFest, Marketing Dynamics and QME conferences for useful feedback. The usual disclaimer applies.
1 Introduction

In many interesting market contexts, firms face rigidities or constraints in fine-tuning their contracts to reflect the full distribution of heterogeneity of the agents they are contracting with. For example, auto-insurance companies are often prevented by regulation from conditioning their premiums on consumer characteristics like race and credit scores. Royalty rates in business-format franchising in the US are typically constrained by norm to be the same across all franchisees in a given chain.\(^1\) Wholesales contracts between manufacturers and downstream retailers in the US typically involve similar wholesales prices to all downstream retailers within a given geographic area due to Robinson-Patman considerations. In salesforces, the context of the empirical example in this paper, incentive or commission rates on output are invariably set the same across all sales-agents within a firm. For instance, a firm choosing a salary + commission salesforce compensation scheme typically sets the same commission rate for every sales-agent on its payroll, in spite of the fact that exploring the heterogeneity and setting an agent-specific commission may create theoretically better incentives at the individual level. While reasons are varied, full or partial uniformity of this sort is well documented to be an ubiquitous feature of real-world salesforce compensation (Rao 1990; Mantrala et al. 1994; Raju and Srinivasan 1996; Zoltners et al. 2001; Lo et al. 2011).

The focus of this paper is on the implications to the principal of this restriction to similar contract terms across agents. We do not take a strong stance on the source of the uniformity, but focus on the fact that any such uniformity in the contract implies that agents and contract terms have to be chosen jointly. In the salesforce context, for example, this creates an interaction between the composition of agent types in the contract and the compensation policy used to motivate them, leading to a “contractual externality” in the firm and generating gains to sorting. This paper explains how this contractual externality arises, discusses a practical approach to endogenize agents and incentives at a firm, and presents an empirical application to salesforce compensation contracts at a US Fortune 500 company that explores these considerations and assesses the gains from a salesforce architecture that sorts agents into divisions to balance firm-wide incentives.

As a motivating example, consider a firm that has chosen a salary + commission scheme. Suppose all agents have the same productivity, but there is heterogeneity in risk aversion amongst the agents. The risk averse agents prefer that more of their pay arises from fixed salary, but the less risk averse prefer more commissions. When commissions are restricted to be uniform across agents, including the more risk averse types in the firm implies the

\(^1\)Quoting Lafontaine and Blair (2009, pp. 395-396), “Economic theory suggests that franchisors should tailor their franchise contract terms for each unit and franchisee in a chain. In practice, however, contracts are remarkably uniform across franchisees at a point in time within chains [emphasis ours]...a business-format franchisor most often uses a single business-format franchising contract—a single royalty rate and franchise fee combination—for all of its franchised operations that join the chain at a given point...Thus, uniformity, especially for monetary terms, is the norm.”
firm cannot offer high commissions. Dropping the bottom tail of agents from the firm may then enable the firm to profitably raise commissions for the rest of agents. Knowing that, the firm should choose agents and commissions jointly. This is our first point: the restriction to uniformity implies the composition and compensation are co-dependent. To address this, we need to enlarge the contracting problem to allow the principal to choose the distribution of types in his firm along with the optimal contract form given that type distribution.

Our second point is that uniformity implies the presence of a sales-agent in the firm imposes an externality on the other agents in the pool through its effect on the shape of the common element of the incentive contract. For instance, suppose agents are homogenous in all respects except their risk aversion, and there are three agents, A, B and C who could be employed, with C the most risk averse. C needs more insurance than A and B and retaining him requires a lower common commission rate. It could then be that A and B are worse off with C in the firm (lower commissions). Thus, the presence of the low-type agent imposes an externality on the other sales-agent in the firm through the endogeneity of contract choice.

This externality can be substantial when agent types are multidimensional (for example, when agents are heterogeneous in risk aversion, productivity and costs of expending sales effort). Consider the above example. It may be optimal for the principal to rank the three agents on the basis of their risk aversion and to drop the “low-type” C from the agent pool. Hence, if risk aversion were the only source of heterogeneity, and we enlarge the contracting problem to allow the principal to choose both the optimal composition and compensation, it may be that “low-types” like C impose little externalities because they are endogenously dropped from the firm. Now, consider what happens when types are multidimensional. Suppose in addition to risk aversion, agents are heterogeneous in their productivity (in the sense of converting effort into output), and C, the most risk averse is the most productive. Then, the principal faces a tradeoff: dropping C from the pool enables him to set more high powered incentives to A and B, but also entails a large loss in output because C is the most productive. In this tradeoff, it may well be that the optimal strategy for the principal is to retain C in the agent-pool and to offer all the lower common commission induced by his presence. Thus multidimensional types increase the chance that the externalities we discussed above persist in the optimally chosen contract. More generally, multidimensionality of the type space also points to the need for a theory to describe who should be retained and who should be let go from the salesforce, because agents cannot be ranked as desirable or undesirable on the basis of any one single variable.

Our main question explores the co-dependence between composition and compensation. We ask to what extent composition and compensation complement each other in realistic salesforce settings. We use an agency theoretic set-up in which the principal chooses both the set of agents to retain in the firm and the optimal contract to incentivize the retained agents. We use our model to assess how contract form changes when the distribution of
ability changes. The answer to this is dependent on the distribution of heterogeneity in the agent pool, and hence is inherently an empirical question.

We leverage access to a rich dataset containing the joint distribution of output and contracts for all sales-agents at a Fortune 500 contact lens company in the US. Following Misra and Nair (2011), we use these data to identify primitive agent parameters (cost of effort, risk aversion, productivity), and to estimate the multidimensional distribution of heterogeneity in these parameters across agents at the firm. In the data, agents are paid according to a nonlinear, quarterly incentive plan consisting of a salary and a linear commission which is earned if realized sales are above a contracted quota and below a pre-specified ceiling. The nonlinearity of the incentive contract creates dynamics in the agent’s actions, causing the agent to optimally vary his effort profile as he moves closer to or above his quota. The joint distribution of output and the distance to the quota thus identify “hidden” effort in this moral hazard setting. Following Misra and Nair (2011), we combine this identification strategy with a structural model of agent’s optimization behavior to recover the primitives underpinning agent types. We then use these estimates as an input into a model of simultaneous contact form and agent composition choice for the principal.

Solving this model involves computing a large-scale combinatorial optimization problem in which the firm chooses one of 2^M possible salesforce configurations from amongst a pool of M potential agents, and solving for the optimal common incentive contract for the chosen pool. To find the optimal composition of agents, we can always enumerate the profits for all 2^M combinations when M is small. If M is large, simple enumeration algorithm is practically infeasible (M is around 60 in our focal firm, and could number in the hundreds or thousands in other applications). Since agents are allowed a multidimensional type space, it is generally not possible to find a simple cut-off rule where agents above some parameter threshold are retained. Exploiting a characterization of the optimal solution for a class of composition-compensation problems, we derive an algorithm that allows us to search the exploding composition-compensation space by reducing the problem from optimization of a set-valued function to a standard optimization program for continuous functions on compact sets. The reduction makes the execution time of the algorithm independent of the composition space itself. In examples we compute, we can search a space of 2^{5000} composition-compensations in fractions of a second. A power-set search of a space of that size is otherwise prohibitive.

We use the algorithm to simulate counterfactual contracts and agent pools at the estimated parameters. We explore to what extent a change in composition of the agents affects the nature of optimal compensation for those agents, and quantify the profit impact of jointly optimizing over composition and compensation. We find that allowing the firm to optimize the composition of its types has bite in our empirical setting. When the firm is restricted to homogenous contracts and no optimization over types, we estimate its payoffs are significantly lower than that under fully heterogeneous contracts. However,
the payoffs under homogeneous contracts when the firm can optimize both composition and compensation come very close to that under fully heterogeneous contracts. Thus, the ability to choose agents seems to help balance the loss in incentives from the restriction to homogeneity. We conjecture this may be broadly relevant in other settings and may help rationalize the prevalence of homogenous contracts in many salesforce settings in spite of the profit consequences of reduced incentives.

We then simulate a variety of salesforce architectures in which the firm sorts its sales-agents into divisions. We restrict each division to offer a uniform commission to all within its purview, but allow commissions to vary across divisions. We then simultaneously solve for the optimal commissions and the optimal allocation of agents to divisions. In the context of our empirical example, we find that a small number of divisions generates profits to the principal that come very close to that under fully heterogeneous contracts. If the firm is allowed to choose its composition as well, this profit gain is achieved with even fewer divisions. The main take-away is that simple contracts combined with the ability to choose agents seem to do remarkably well compared to more complex contracts, at least in the context of our empirical example.

Our analysis is related to a literature that emphasizes the “selection” effect of incentives, for example, Lazear’s famous 2000a analysis of Safelite Glass Corporation’s incentive plan for windshield installers, in which he demonstrates that higher-ability agents remain with the company after it switched from a straight salary to a piece-rate; or Bandiera et al.’s 2007 analysis of managers at a fruit-picking company, who started hiring more high ability workers after they were switched to a contract in which pay depends on the performance of those workers. Lazear and Bandiera et al. present models of how the types of agents that sort into or are retained at the firm changes in response to an exogenously specified piece-rate. In our set-up, the piece-rate itself changes as the set of agents at the firm changes, because the firm jointly chooses the contract and the agents. The endogenous adjustment of the contract as the types change is key to our story. The closest we know to our point in the literature is Lazear (2000b), who shows that firms may choose incentives to attract agents of high ability. Unlike our set-up though, Lazear considers unidimensional agents in an environment with no asymmetric information or uncertainty. The broader point here that piece-rates help manage heterogeneity within the firm is analogous to Lazear’s insight.

The literature on relative performance schemes and on teams (Holmstrom 1982; Kandel and Lazear 1992; Hamilton et al. 2003; Misra, Pinker and Shumsky 2004) has identified other contexts wherein one agent’s characteristics or actions substantively affects another’s welfare via an interaction with incentives. The contractual externality we identify persists when agents have exclusive territories and there are no across-agent complementarity or substitution effects in output, and is relevant even when contracts are absolute and not relative. It is thus distinct from the mechanisms identified in this literature. A related literature on contract design in which one principal contracts with many agents focuses on the conditions where relative incentive schemes arise endogenously as optimal, and not on
the question of the joint choice of agents and incentives, which is our focus here. Broadly speaking, the relative incentive scheme literature focuses on the value of contracts in filtering out common shocks to demand and output, and on the advantages of contracting on the ordinal aspect of outputs when output is hard to measure (e.g., Lazear and Rosen 1981; Green and Stokey 1983; Mookerjee 1984; Kalra and Shi 2001; Lim et al. 2009; Ridlon and Shin 2010). Common shocks and noise in the output measure are not compelling features of our empirical setting which involves selling of contact-lenses to optometrists, for which seasonality and co-movement in demand is limited, and sales (output) are precisely tracked. A small theoretical literature also emphasizes why a principal may choose a particular type of agent in order to signal commitment to a given policy (e.g., shareholders may choose a “visionary” CEO with a reputation for change-management so as to commit to implementing change within the firm: e.g., Rotemberg and Saloner, 2000). Our point, that the principal may choose agents for incentive reasons, is distinct from that in this literature which focuses on commitment as the rationale of the principal for its choice of agents. A related theoretical literature has also noted that contracts may signal information that affects the set of potential employees or franchisees a principal may contract with (Desai and Srinivasan 1995; Godes and Mayzlin 2012), without focusing on the principal’s choice of agents explicitly.

Our model predicts that agents and incentives across firms are simultaneously determined and has implications for two related streams of empirical work. One stream measures the effect of incentives on workers, and tests implications of contract theory using data on observed contracts and agent characteristics across firms (see Pendergast 1999 for a review). In an important contribution to the econometrics in this area, Ackerberg and Botticini (2002) note that when agents are endogenously matched to contracts, the correlation observed in data between outcomes and contract characteristics should be interpreted with caution. A potential for confounds arises from unobserved agent characteristics that may potentially be correlated with both outcomes and contract forms. The resulting omitted variables problem may result in endogeneity biases when trying to measure the causal effect of contracts on outcomes. Our model, which provides a rationale for why agent and contracts characteristics are co-determined across firms, has similar implications for empirical work using across-agent data. The model implies that the variation in contract terms across firms is endogenous to worker characteristics at those firms. While Ackerberg and Botticini (2002) stress the omitted variables problem, the endogeneity implied by our model derives from the simultaneity of contracts and agents.

A second stream pertains to work that has measured complementarities in human resource practices within firms, testing the theory developed in Milgrom and Roberts (1990) and Holmstrom and Milgrom (1994), amongst others. This theory postulates that human resource activities like worker training and incentive provision are complementary activities. A large body of empirical work has measured the extent of these complementarities using across-firm data correlating worker productivity with the incidence of these activities.
Our model predicts that workers and incentives (or HR practices, more generally) are optimally jointly chosen. When better workers also have corresponding better productivity, the simultaneity of worker choice and HR practices implies the incidence of HR practices are endogenous in productivity regressions, which confounds the measurement of such complementaries using across-firm data. A related implication of our model is that endogenously adjusting common clauses of firm-wide contracts can generate across-agent dependencies in output that generate *indirect* complementarities. If these are not accounted for, it may confound measurement of other sources of *direct* complementarities like peer effects that researchers are interested in measuring using within-firm personnel data. More research and better data are required to address these kinds of difficult econometric concerns in empirical work.

We now discuss our model set-up and present the rest of the analysis.

2 Model

A firm wishes to optimize the composition and compensation of its salesforce. The firm is assumed to know all the agent’s relevant characteristics with certainty, but is not able to observe their effort with certainty. Conditional on the group of agents, the problem is similar to the classic hidden action problem of Holmstrom (1979). Principal certainty of the agents characteristics may be a reasonable assumption for the retention problem where the firm has known the agents for a long time (like in our application), but is far more questionable as a point of departure for hiring. Attention is therefore here restricted to the retention problem, on who the firm should retain when there are contractual externalities that depend on the composition. To simplify the application, we abstract away from uncertainty about the agents types to avoid issues of learning and adverse selection. Learning about agent type is not of first-order importance in our application because most agents have been with the firm for a long time (mean tenure 9 years). However, this may be an important dynamic for new workers. We discuss these issues in more detail later in the paper.

Reflecting the empirical application, the firm has divided its potential market into N geographic territories, and the maximum demand at the firm is for N sales-agents.\(^2\) There are N heterogeneous sales-agents indexed by $i = 1,...,N$ currently employed or employable. Let \mathcal{M}_N denote the power-set spanned by N (that is, all possible sub-salesforces that could be generated by N), and $W_\mathcal{M}$ the set of compensation contracts possible for a specific sub-salesforce \mathcal{M}. Let S_i denote agent i’s output, $W(S_i)$ his wages conditional on output, and $F(S_i|e_i)$ denote the CDF of output conditional on effort choice, e_i. Effort e_i is privately observed by the agent and not by the principal, while output S_i is observed by

\(^2\)More generally, the need for a maximum of N agents can be thought of as implying that total profit for the firm is concave in N.

\(7\)
both the agent and the principal, and hence is contractible. As is common in the agency literature, we assume that the agent chooses effort before sales are realized, that both he and the principal share the same beliefs about the conditional distribution of output \((F(S_i|e_i))\) (common knowledge about outcomes). Since sales are stochastic, the principal cannot back out the hidden effort from realized output, which generates the standard moral hazard problem.

The principal maximizes,

\[
\max_{M \in M_N, W \in \mathcal{W}_M} \Pi = \int \sum_{i \in M} \left[S_i - W(S_i) \right] dF(S_i|e_i) \tag{1}
\]

where the control, \((M, W)\), is the set of active agents and their compensation. The maximization is subject to the Incentive Compatibility (IC) constraints, that the effort chosen by each agent \(i\) is optimal,

\[
e_i = \arg \max_{e} \int U(W(S_i), C(e; \mu_i)) dF(S_i|e) \quad \forall i \in M
\]

and the Individual Rationality (IR) constraints that each active agent \(i\) receives at least expected reservation utility \(\tilde{U}_i^0\) from staying with the firm and working under the suggested contract,

\[
\int U(W(S_i), C(e; \mu_i)) dF(S_i|e_i) \geq \tilde{U}_i^0 \quad \forall i \in M \tag{3}
\]

The above set-up endogenizes the principal’s choice of the agent pool in the following way. The principal knows each agent’s type (including reservation utility). He designs a contract such that the IR constraints in equation (3) are satisfied only for the set of agents in \(M\) and violated for all others. This contract provides the chosen set of agents in \(M\) enough utility to stay; the rest are better off pursuing their outside option. Thus the contract endogenously induces the preferred agents to stay and the others to quit. To complete the model, we also need to specify what happens to demand from a territory managed by an agent if that agent leaves. We assume that sales equivalent to the intercept in the output function (discussed below) continue to accrue to the firm even if no agent operates in that territory. This encapsulates the notion that a base level of sales will be generated to the firm even in the absence of any marketing or salesforce effort. Given this, an equivalent interpretation of the principal’s decision to offer a contract that induces an agent to quit is that he has decided to vacate the territory managed by the agent. Obtaining only the base level of sales from the territory but offering an improved contract to the others, is more beneficial than retaining the agent and incurring the added pay and contractual externalities induced by his presence.
Equivalent Bi-level Setup We can reformulate the problem by allowing the principal to choose the optimal contract in a first step, and then solving point wise for the optimal configuration for the chosen contract. The program described above is equivalent to the case where the principal maximizes,

$$
\Pi = \max_{W \in \mathcal{W}, \mathcal{M}} \int \sum_{i \in \mathcal{M}} [S_i - W(S_i)] dF(S_i|e_i)
$$

with,

$$
\mathcal{M} = \int \sum_{i \in \mathcal{M}} [S_i - W_M(S_i)] dF(S_i|e_i)
$$

subject to the IC and IR constraints as before. Contractual externalities arise because some elements of the contract $W(S_i)$ are common across agents, which makes the problem non-separable across agents. Since $\mathcal{M} \in \mathcal{M}_N$ is point-wise the optimal sub-salesforce plan for each considered contract W, the solution to this revised problem returns the solution to the original program. Representing the program this way helps understand our numerical algorithm for solution more clearly.

3 Application Setting

To illustrate the main forces at work clearly and to operationalize the setup above for our empirical setting, we now discuss the parametric assumptions we impose. We employ a version of the well-known Holmstrom and Milgrom (1987) model for two reasons:

1. The model has a closed-form solution that is useful from both an illustrational and a computational point of view.

2. The optimal contracts are linear (salary plus commission) which is empirically relevant.

Though linear contracts are used as the illustrational vehicle, the qualitative aspects of the setup holds more generally for any multilateral contracting problem with inter-agent externalities induced by common contractual components. Each agent i is described completely by a tuple \{\(h_i, k_i, d_i, r_i, \sigma_i, U^o_i\}\}. The elements of the tuple will become clear in what follows. Sales are assumed to be generated by the following functional,

$$
S_i = h_i + k_i e_i + \sigma_i \varepsilon_i
$$

(4)

This functional has been used in the literature (see e.g. Lal and Srinivasan 1992) and interprets h as the expected sales in the absence of selling effort (i.e. $E[S_i|e_i = 0] = h_i$), k as the marginal productivity of effort and σ^2 as the uncertainty in the sales production.
process. As is usual, we assume that the firm only observes \(S_i \) and knows \(\{ h, k, \sigma \} \) for all agents. The density \(F(S_i|\epsilon_i) \) is induced by the density of \(\epsilon_i \). Under linear contracts, compensation given as \(\alpha_i + \beta S_i \).

The agent’s utility function is defined as CARA,

\[
U_i = -\exp \{-r_i W_i\} \tag{5}
\]

with wealth linear in output, and costs which are quadratic in effort,

\[
W_i = \alpha_i + \beta S_i - \frac{d_i}{2} e_i^2 \tag{6}
\]

The agent maximizes expected utility,

\[
\mathbb{E}[U_i] = -\int \exp \left\{ -r \left(\alpha_i + \beta S_i - \frac{d_i}{2} e_i^2 \right) \right\} dF(\epsilon_i) \\
= -\exp \left\{ -r \left(\alpha_i + \beta (h_i + k_i \epsilon_i) - \frac{d_i}{2} e_i^2 - \frac{r_i}{2} \beta^2 \sigma_i^2 \right) \right\} \tag{7}
\]

The Certainty Equivalent is,

\[
\mathcal{C}E_i = \alpha_i + \beta (h_i + k_i \epsilon_i) - \frac{d_i}{2} e_i^2 - \frac{r_i}{2} \beta^2 \sigma_i^2 \tag{8}
\]

which implies that the optimal effort for the agent is,

\[
e_i(\beta) = \beta \frac{k_i}{d_i} \tag{9}
\]

3.1 The Principal’s Problem

The principal treats agents as exchangeable and cares only about expected profits,

\[
\mathbb{E}[\Pi] = \mathbb{E} \left[\sum_{i=1}^{N} (S_i - \beta S_i - \alpha_i) \right] \tag{10}
\]

which is maximized subject to,

\[
IC : e_i(\beta) = \frac{\beta k_i}{d_i} \\
IR : \mathcal{C}E_i \geq U_i^o \tag{11}
\]
In the above, \(U^0_i \) is the certainty equivalent of the outside option utility. The problem can be simplified by first incorporating the IC constraint,

\[
\mathbb{E} [\Pi] = \sum_{i=1}^{N} \left(\mathbb{E}(S_i) - \beta \mathbb{E}(S_i) - \alpha_i \right)
\]

\[
= \sum_{i=1}^{N} \left(1 - \beta \right) \left(h_i + k_i e_i(\beta) \right) - \alpha_i \tag{12}
\]

Further if the IR constraint is binding we have,

\[
\alpha_i(\beta) = U^0_i - \left[\beta \left(h_i + k_i e_i(\beta) \right) - \frac{d_i}{2} e_i^2(\beta) - \frac{r_i^2 \beta^2 \sigma^2_i}{2} \right] \tag{13}
\]

and substituting in we have,

\[
\mathbb{E} [\Pi] = \sum_{i=1}^{N} \left[\left(1 - \beta \right) \left(h_i + k_i e_i(\beta) \right) - U^0_i + \left\{ \beta \left(h_i + k_i e_i(\beta) \right) - \frac{d_i}{2} e_i^2(\beta) - \frac{r_i^2 \beta^2 \sigma^2_i}{2} \right\} \right]
\]

\[
= \sum_{i=1}^{N} \left[h_i + k_i e_i(\beta) - U^0_i - \frac{d_i}{2} e_i^2(\beta) - \frac{r_i^2 \beta^2 \sigma^2_i}{2} \right] \tag{14}
\]

Differentiating with respect to \(\beta \) we get,

\[
\frac{\partial \mathbb{E} [\Pi]}{\partial \beta} = \sum_{i=1}^{N} k_i e_i'(\beta) - d_i e_i'(\beta) - r_i \beta \sigma_i^2
\]

where,

\[
e_i'(\beta) = \frac{\partial e_i(\beta)}{\partial \beta} = \frac{k_i}{d_i}
\]

which gives the optimal uniform commission,

\[
\beta = \frac{1}{1 + \gamma} \tag{17}
\]

where, \(\gamma \),

\[
\gamma = \frac{\sum_{i=1}^{N} r_i \sigma_i^2}{\sum_{i=1}^{N} \frac{k_i^2}{d_i}}
\]

is an aggregate measure of the distribution of types within the firm. The salary, \(\alpha_i \) can be obtained by substitution. Equation (17) encapsulates the effect of each agent type on the contract: the optimal \(\alpha_i, \beta \) depends on the distribution of characteristics of the entire
agent pool. Equation (17) demonstrates the contractual externality implied by homogeneity restrictions: when an agent joins or leaves the salesforce, he affects everyone else by changing the optimal β. Equation (17) also helps us build intuition about how the distribution of types in the firms shifts the common commission rate. Holding everything else fixed, an increase in the level of risk aversion in the salesforce increases γ, which reduces the commission rate as expected. As normalized productivity, $k^2_i d_i$, increases in the salesforce, γ falls, and optimal commissions increase as expected. Both are intuitive. An assessment of the net effect on commissions as both risk aversion and normalized productivities change is more difficult, as it depends on the extent of affiliation between these parameters in the salesforce (e.g., whether more risk-averse agents are more productive or less).

To see how the profit function depends overall on agent’s types, we can write equation (14) evaluated at the optimal commission β as,

$$
E[\Pi(\beta)] = \sum_{i=1}^{N} (h_i - U^0_i) + \frac{\beta}{2} \left(\sum_{i=1}^{N} \frac{k_i^2}{d_i} \right)
$$

Equation (18) shows that at the optimal β^*, the payoff across agents is no longer separable across types. Equation (19) defines the firm’s optimization problem over the N agent types given optimal choice of incentives for each sub-configuration.

To build intuition, suppose the firm has the option of retaining three agents with low, medium and high risk aversion. If forced to retain all three on the payroll on a salary + commission scheme, the firm is not able to have a very high-powered incentive scheme with
a high commission rate because the high risk-averse agent has to be provided significant insurance. Firing the high risk averse agent will allow the firm to optimally charge a higher commission rate to the remaining two agents. Depending on the productivity and cost parameters of the three agents, we can construct examples where the payoffs to the firm with two agents and the high commission are higher than with three agents and the lower commission.

A Simple 3-Agent Example

In the three agent example below, it is shown that the principal may not find the most prolific sales agent attractive if that agent sufficiently skews the incentives of the other agents. The parameters are set to \((h, k, \sigma) = 1\) for all agents. The remaining parameters are given by:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Agent 1</th>
<th>Agent 2</th>
<th>Agent 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(d)</td>
<td>(\frac{1}{5})</td>
<td>(\frac{2}{5})</td>
<td>(\frac{1}{5})</td>
</tr>
<tr>
<td>(r)</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>(U^0)</td>
<td>(\frac{2}{3})</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Agent 1 has the lowest cost of effort \(d\), agent 2 has the lowest risk aversion and agent 3 has the lowest outside utility \(U^0\). Because of the multidimensional type space, it is not immediately clear which agents are the most profitable.

The first three rows in the Table below gives the individually optimal contracts for all three agents. With no contractual externalities, the firm would retain all agents and provide each agent a commission tailored to his type and set a salary that just leaves each his reservation utility.

<table>
<thead>
<tr>
<th>Uniform commissions</th>
<th>Composition</th>
<th>Profits</th>
<th>Commission Rate</th>
<th>Sales</th>
<th>Compensation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 agent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1, 0, 0)</td>
<td></td>
<td>0.14</td>
<td>0.56</td>
<td>3.78</td>
<td>3.64</td>
</tr>
<tr>
<td>(0, 0, 1)</td>
<td></td>
<td>0.29</td>
<td>0.29</td>
<td>1.57</td>
<td>0.29</td>
</tr>
<tr>
<td>2 agents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1, 1, 0)</td>
<td></td>
<td>0.02</td>
<td>0.45</td>
<td>4.54</td>
<td>4.52</td>
</tr>
<tr>
<td>(1, 0, 1)</td>
<td></td>
<td>1.28</td>
<td>0.44</td>
<td>5.06</td>
<td>3.78</td>
</tr>
<tr>
<td>(0, 1, 1)</td>
<td></td>
<td>1.33</td>
<td>0.25</td>
<td>2.67</td>
<td>1.33</td>
</tr>
<tr>
<td>Individually optimal contracts</td>
<td>(1, 1, 1)</td>
<td>1.49</td>
<td>(0.56, 0.18, 0.29)</td>
<td>6.47</td>
<td>4.99</td>
</tr>
</tbody>
</table>

In the fully heterogenous plan summarized in the last row, there are no externalities. Agent 1 gets the largest commission (56%), agent 2 the smallest (18%), and the firm makes a profit of 1.49. Now consider what happens when the firm is restricted to a common
commission, but individual salaries for each agent. The results are given in the upper rows. Solving for each configuration, we find that the firm would optimally drop agent 1 from the pool (expected payoff of 1.33 with an optimal common commission rate to agents 2 and 3 of 25%). Including agent 1 in the composition requires the firm to set a higher commission rate (39%), which is too high for the other agents, reducing the firm’s payoffs to 1.24.

Looking at the first two rows of the two agent compositions, agent 1’s presence in the pool is seen to exert skew the incentives of agent 2 and 3 away from their individually optimal commissions. If only agent 1 is retained, he would be paid a high-powered commission rate of 56%, while agents 1 and 2 prefer commissions of only 18% and 29% respectively. In this example, the firm is better off dropping the high-powered sales-agent from the pool. Without agent 1, the firm can set an intermediate level of commissions (25%) that provides 2 and 3 better incentives. For a more dramatic effect, consider agent 1 and 2 individually. At the heterogeneous contracts at individual commissions 56% and 18%, they bring in profits of 0.20. Under a uniform commission commission of 45%, the profit is reduced to 0.02, as agent 1 gets underpowered incentives and agent 2 gets overpowered incentives.

The firm makes lower sales with only agents 2 and 3 than with 3 agents (2.67 versus 5.99), but compensation payout is also lower, and the net effect is a higher profit. By changing parameters, we can generate other examples where the low-commission agent is dropped from the pool in order to set high-powered incentives for the remaining agents, which is the mirror-image to this setting. The example below also illustrates the complication induced by multidimensional types: the desirability of an agent cannot be ordered on any one dimension by a simple cut-off rule.

Note that the profits under the optimal uniform commission plan (1.33) come close to that of the individual optimal plan (1.49), despite the restriction to common commissions and the heterogeneity in individually optimal commissions. The example illustrates how careful choice of composition can compensate for the reduced incentives implied by the common contract terms, a point that also shows up in our empirical application below.

The simple example shows how composition and compensation interact in influencing firm profits. While the example has only three agents, it provides a glimpse into the workings of this interaction, and in particular shows that commonly used performance measures such as sales (or even profit contribution) may not be useful in determining which agents should stay. Indeed, in the above example, agent 1 had the highest productivity in terms of sales (3.78 vs. 1.12 and 1.57 for agents 2 and 3) and the second highest profit contribution (.14 vs .06 and 1.29 for agents 2 and 3). However, keeping the agent in the pool distorted the incentives to the others. We conjecture that similar patterns apply more generally in real world sales-forces. To examine this conjecture we use data from a real salesforce below. Before doing so, we introduce our algorithm to compute the optimal salesforce composition.
4 The Solution Algorithm

The simple example presented above used a complete enumeration of possible salesforce compositions to examine profitability. Real-world sales-forces often numbers in the hundreds or thousands, and this approach is not practical. The joint determination of the composition and compensation is a non-standard mixed-integer program. Nevertheless, the decomposition of the problem into two parts we outlined above converts it into a form that can be solved by standard methods. We solve the joint problem by an inner-outer loop procedure. In the inner loop, we solve for the optimal composition for any compensation. In the outer loop, we search over compensations. Despite the combinatorial nature of the composition problem, we show how to concentrate out the exact optimal composition conditional on the contracts in a convenient form. The complexity of the resulting program is linear in N and the search over compensations is a standard optimization problem.

The key to our algorithm is to note that all the externalities are channeled through the contracts. Holding the contract fixed, the individual profitability of any agent is independent of the composition itself. The principal’s question of whether to keep an agent or not at given contract therefore depends only on whether the agent is profitable and not on the composition itself. Hence, conditioning on the contract helps address the combinatorial explosion.

Equation (17) gives the optimal common commission β for any considered composition profile. Given β one can invert out the firm optimal salaries from the IR constraint agent-by-agent,

$$\alpha(\beta) : CE_i(\alpha_i, \beta) = U_i^0$$

(20)

where we note that the optimal salaries $\alpha(\beta)$ are continuous in β. The optimal contracts are now summarized by β. Define agent i’s profit contribution at contract β,

$$\pi_i(\beta) = \mathbb{E}[S_i(\beta) - (\alpha_i(\beta) - \beta S_i)] \text{ for all } i \in \mathcal{M}$$

We then show that at the optimum, the profit contribution of any included agent is positive.

Proposition 1 At the optimal composition-compensations $(\mathcal{M}^*, \beta(\mathcal{M}^*))$

1. $\pi_i(\beta(\mathcal{M}^*)) \geq 0$ for all $i \in \mathcal{M}^*$

2. $\pi_i(\beta(\mathcal{M}^*)) < 0$ for all $i \in (1, \ldots, N) \setminus \mathcal{M}^*$

Proof. For the first part, suppose not, and that $\pi_{i'}(\beta(\mathcal{M}^*)) < 0$ for some agent $i' \in \mathcal{M}^*$. Then the firm could fire agent i' and hold the compensation $\mathcal{W}(\beta(\mathcal{M}^*))$ fixed for the remaining agents in $\mathcal{M}^* \setminus i'$. Since none of the remaining agents face different incentives, their profit contributions stay constant and net profits would improve. But that con-
tradicts the optimality of the composition-compensation \((M^*, \beta(M^*))\). It follows that
\(\pi_i(\beta(M^*)) \geq 0\) for all \(i \in M^*\). Part 2 follows by analogous logic. ■

The intuition is simple: if an excluded agent can be profitably employed without changing the incentives of the other agents, than he for sure can be profitably employed at a commission optimized for the composition including him. If so, he belongs to the optimal composition and we have a contradiction. Given positivity of conditional profits as above, we can then construct a conditional value function that concentrates out the composition problem conditional on \(\beta\):

\[
\pi(\beta) = \sum_{i \in (1,..,N)} 1_{\pi_i(\beta) \geq 0} \pi_i(\beta). \quad (21)
\]

The concentrated value function sums the profit contributions of the agents that are retained in the optimal composition conditional on \(\beta\). Since the composition problem conditional on \(\beta\) involves integer optimization, one may suspect the conditional value function is discontinuous, precluding a smooth search over \(\beta\). We now prove the following useful property of the conditional value function:

Proposition 2 The conditional value function \(\pi(\beta)\) is continuous in \(\beta\).

Proof. Both the expectation of the sales process in Equation (4) and the concentrated salaries in Equation (20) are continuous functions of \(\beta\), so it follows that the \(\pi_i(\beta)\) is continuous in \(\beta\) for all \(i \in (1,..,N)\). The profit contribution of any agent \(i\) to the conditional value function in Equation (21) is the upper envelope of two continuous functions of \(\beta\), that is \(\max\{0, E[S_i(\beta)(1 - \beta) - \alpha_i(\beta)]\}\), which is itself continuous. Finally, the conditional value function in Equation (21) sums the non-negative profit contributions of all agents \(i \in (1,..,N)\) for any \(\beta\), and is itself the sum of continuous functions, and therefore also continuous. ■

Note that the continuity property places no restrictions on the underlying distributions of agents parameters, which facilitates empirical work.

4.1 Algorithm

The results above give us the solution algorithm:

1. For a given \(\beta\), calculate \(\pi_i(\beta)\) for all \(i \in (1,..,N)\).

2. Search the conditional value function (21) over \([0,1]\) for the optimal \(\beta^*\).

At \(\beta^*\), the optimal composition is \(i : \pi_i(\beta^*) > 0, i \in (1,..,N)\). The algorithm reduces the joint problem to a search of a continuous function over a compact set, which is a standard optimization problem. Importantly, the algorithm is linear in \(N\) even though the space of compositions increases exponentially. Utilizing this characterization enables us to reduce
the problem to a unidimensional search over $\beta \in [0, 1]$, rather than a combinatorial search over the space of 2^N compositions. For N moderately large, this approach can yield a significant improvement in terms of computational time. More importantly, since the problem is smooth and continuous in β, the optimization approach facilitates comparative statics and hence insights into properties of the solution. Some numerical examples of the algorithm for various sizes of N is given in the appendix.

5 Empirical Application

Our data come from the direct selling arm of the sales-force division of a large contact lens manufacturer in the US (we cannot reveal the name of the manufacturer due to confidentiality reasons). These data were used in Misra and Nair (2001), and some of the description in this section partially borrows from that paper. Contact lenses are primarily sold via prescriptions to consumers from certified physicians. Importantly, industry observers and casual empiricism suggests that there is little or no seasonality in the underlying demand for the product. The manufacturer employs a direct salesforce in the U.S. to advertise and sell its product to physicians (also referred to as “clients”), who are the source of demand origination. The data consist of records of direct orders made from each doctor’s office via an online ordering system, and have the advantage of tracking the timing and origin of sales precisely. Agents are assigned their own, non-overlapping, geographic territories, and are paid according to a nonlinear period-dependent compensation schedule. Pricing issues play an insignificant role for output since the salesperson has no control over the pricing decision and price levels remained fairly stable during the period for which we have data. The compensation schedule for the agents involves salaries, quotas and ceilings. Commissions are earned on any sales exceeding quota and below the ceiling. The salary is paid monthly, and the commission, if any, is paid out at the end of the quarter. The sales on which the output-based compensation is earned are reset every quarter. Additionally, the quota may be updated at end of every quarter depending on the agent’s performance (“ratcheting”). Our data includes the history of compensation profiles and payments for every sales-agent, and monthly sales at the client-level for each of these sales-agents for a period of about 3 years (38 months).

The firm in question has over 15,000 SKU-s (Stock Keeping Units) of the product. The product portfolio reflects the large diversity in patient profiles (e.g. age, incidence of astigmatism, nearsightedness, farsightedness etc.), patient needs (e.g. daily, disposable etc.) and contact lens characteristics (e.g. hydrogel, silicone-hydrogel etc.). The product portfolio of the firm features new product introductions and line extensions reflecting the large investments in R&D and testing in the industry. The role of the sales-agent is partly informative, by providing the doctor with updated information about new products available in the product-line, and by suggesting SKU-s that would best match the needs of the patient profiles currently faced by the doctor. The sales-agent also plays a persuasive
role by showcasing the quality of the firm’s SKU-s relative to that of competitors. While agent’s frequency of visiting doctors is monitored by the firm, the extent to which he “promotes” the product once inside the doctor’s office cannot be monitored or contracted upon. In addition, while visits can be tracked, whether a face-to-face interaction with a doctor occurs during a visit in within the agent’s control (e.g., an unmotivated agent may simply “punch in” with the receptionist, which counts as a visit, but is low on effort).³

Misra and Nair (2011) used these data to estimate the underlying parameters of the agent’s preferences and environments using a structural dynamic model of forward-looking agents. For our simulations, we use some parameters from that paper, while some are calibrated. We provide a short overview of the model and estimation below, noting differences from their analysis in passing.

5.1 The Model for Sales-Agents

The compensation scheme involves a salary, α_t, paid in month t, as well as a commission on sales, β_t. The sales on which the commission is accrued is reset every N months. The commission β_t is earned when total sales over the sales-cycle, Q_t, exceeds a quota, a_t, and falls below a ceiling b_t. No commissions are earned beyond b_t. Let I_t denote the months since the beginning of the sales-cycle, and let q_t denote the agent’s sales in month t. Further, let χ_t be an indicator for whether the agent stays with the firm. $\chi_t = 0$ indicates the agent has left the focal company and is pursuing his outside option. Assume that once the agent leaves the firm, he cannot be hired back (i.e. $\chi_t = 0$ is an absorbing state). The total sales, Q_t, the current quota, a_t, the months since the beginning of the cycle I_t, and his employment status χ_t are the state variables for the agent’s problem. We collect these in a vector $s_t = \{Q_t, a_t, I_t, \chi_t\}$, and collect the observed parameters of his compensation scheme in a vector $\Psi = \{\alpha, \beta\}$. We will use the data in combination with a model of agent behavior to back out the parameters indexing agent’s types. The results in this paper are obtained taking these parameters as given.

The index i for agent is suppressed in what follows below. At the beginning of each period, we assume the agent observes his state, and chooses to exert effort e_t. Based on his effort, sales q_t are realized at the end of the period. Sales q_t is assumed to be a stochastic, increasing function of effort, e and a demand shock, ϵ_t, $q_t = q(\epsilon_t, e)$. The agent’s utility is derived from his compensation, which is determined by the incentive scheme. We write the agent’s monthly wealth from the firm as, $W_t = W(s_t, e_t, \epsilon_t; \mu, \Psi)$ and the cost function as $\frac{de_t^2}{2}$, where d is to be estimated. We assume that agents are risk-averse, and that conditional on $\chi_t = 1$, their per-period utility function is,

$$ u_t = u(Q_t, a_t, I_t, \chi_t = 1) = \mathbb{E} [W_t] - r \times \text{var} [W_t] - \frac{de_t^2}{2} \tag{22} $$

³The firm does not believe that sales-visits are the right measure of effort. Even though sales-calls are observed, the firm specifies compensation based on sales, not calls.
Here, \(r \) is a parameter indexing the agent’s risk aversion, and the expectation and variance of wealth is taken with respect to the demand shocks, \(\varepsilon_t \). In the case of a salary + piece-rate of the type considered before, equation (22) collapses to exactly the form denoted in equation (8) for the certainty equivalent. We can thus interpret equation (22) as the nonlinear-contract analogue to the certainty equivalent of the agent under a linear commission. The payoff from leaving the focal firm and pursuing the outside option is normalized to \(U^0 \),

\[
U_t = u(Q_t, a_t, I_t, \chi_t = 0) = U^0
\]

In this model, sales are assumed to be generated as a function of the agent’s effort, which is chosen by the agent maximizing his present discounted payoffs subject to the transition of the state variables. The first state variable, total sales, is augmented by the realized sales each month, except at the end of the quarter, when the agent begins with a fresh sales schedule, i.e.,

\[
Q_{t+1} = \begin{cases}
Q_t + q_t & \text{if } I_t < N \\
0 & \text{if } I_t = N
\end{cases}
\]

For the second state variable, quota, we estimate a semi-parametric transition function that relates the updated quota to the current quota and the performance of the agent relative to that quota in the current quarter,

\[
a_{t+1} = \begin{cases}
a_t & \text{if } I_t < N \\
\sum_{k=1}^{K} \theta_k \Gamma(a_t, Q_t + q_t) + v_{t+1} & \text{if } I_t = N
\end{cases}
\]

In above, the new quota is allowed to depend flexibly on \(a_t \) and \(Q_t + q_t \), via a \(K \) order polynomial basis indexed by parameters, \(\theta_k \) to capture in a reduced-form way, the manager’s policy for updating agent’s quotas. The term \(v_{t+1} \) is an i.i.d. random variate which is unobserved by the agent in month \(t \). The distribution of \(v_{t+1} \) is denoted \(G_v(.) \), and will be estimated from the data. Finally, the transition of the third state variable, months since the beginning of the quarter, is deterministic,

\[
I_{t+1} = \begin{cases}
I_t + 1 & \text{if } I_t < N \\
1 & \text{if } I_t = N
\end{cases}
\]

Finally, the agent’s employment status in \((t+1) \), depends on whether he decides to leave the firm in period \(t \). Given the above state-transitions, we can write the agent’s problem as choosing effort to maximize the present-discounted value of utility each period, where future utilities are discounted by the factor, \(\rho \). We collect all the parameters describing the agent’s preferences and transitions in a vector \(\Omega = \{ \mu, d, r, G_\varepsilon(\cdot), G_v(\cdot), \theta_k, k=1,\ldots,K \} \). In month \(I_t < N \), the agent’s present-discounted utility under the optimal effort policy can be represented by a value function that satisfies the following Bellman equation (see
Misra and Nair 2011),

\[
V (Q_t, a_t, I_t, \chi_t; \Omega, \Psi) = \\
\max_{\chi_{t+1} \in (0,1), e > 0}
\left\{ \begin{array}{l}
u (Q_t, a_t, I_t, e; \Omega, \Psi) \\
+ \rho \int_{\xi} V (Q_{t+1} = Q_t, q (\varepsilon_t, e), a_{t+1} = a_t, I_t + 1, \chi_{t+1}; \Omega, \Psi) f (\varepsilon_t) d\varepsilon_t \end{array} \right\}
\]

(27)

Similarly, the Bellman equation determining effort in the last period of the sales-cycle is,

\[
V (Q_t, a_t, N, \chi_t; \Omega, \Psi) = \\
\max_{\chi_{t+1} \in (0,1), e > 0}
\left\{ \begin{array}{l}
u (Q_t, a_t, N, e; \Omega, \Psi) \\
+ \rho \int_{\xi} \int_{\varepsilon} V (Q_{t+1} = 0, a_{t+1} = a_t, I_t + 1, \chi_{t+1}; \Omega, \Psi) f (\varepsilon_t) \phi (\varepsilon_t) d\varepsilon_t d\varepsilon_t + 1 \end{array} \right\}
\]

(28)

Conditional on staying with the firm, the optimal effort in period \(t\), \(e_t = e (s_t; \Omega, \Psi)\) maximizes the value function,

\[
e (s_t; \Omega, \Psi) = \arg \max_{e > 0} \{ V (s_t; \Omega, \Psi) \}
\]

(29)

The agent stays with the firm if the value from employment is positive, i.e.,

\[
\chi_{t+1} = 1 \text{ if } \max_{e > 0} \{ V (s_t; \Omega, \Psi) \} \geq 0
\]

This completes the specification of the model specifying the agent’s behavior under the plan that generated the data. Given this set-up, the structural parameters describing an agent \(\Omega\), are estimated in two steps.

Estimation

First, we recognize that once effort, \(\hat{e}_t\) is estimated, we can treat hidden actions as known. The theory implies \(s_t\) is the state vector for the agent’s optimal dynamic effort choice. We can use the theory, combined with dynamic programming to solve for the optimal policy function \(e^* (s_t; \Omega)\), given a guess of the parameters \(\Omega\). Because \(\hat{e}_t\) is known, we can then use \(\hat{e}_t = e^* (s_t; \Omega)\) as a second-stage estimating equation to recover \(\Omega\). Misra and Nair (2011) implement this approach agent-by-agent to recover \(\Omega\) for each agent separately. They exploit panel-data available at the client-level for each agent to avoid imposing cross-agent restrictions, thereby obtaining a semi-parametric distribution of the types in the firm.

The question remains how the effort policy, \(\hat{e}_t = \hat{e} (s_t)\) can be obtained? The intuition
used in Misra and Nair is to exploit the nonlinearity of the contract combined with panel data for identification. The nonlinearity implies the history of output within a compensation horizon is relevant for the current effort decision, because it affects the shadow cost of working today. Thus, effort is time varying, and dynamically adjusted. The relationship between current output and history is observed in the data. This relationship will pin down hidden effort. Intuitively, the path of output within the compensation cycle is informative of effort. We refer the reader to that paper for further details of estimation and identification.4 For the counterfactuals in this paper, we need estimates of \(\{h, k, d, r, U^0, G_e(.)\} \). Here, we assume that \(G_e(.) \sim N(0, \sigma^2) \). So, we need \(\theta \equiv \{h, k, d, r, U^0, \sigma\} \). We use the same parameters from Misra and Nair for these, estimating \(\sigma \) from imposing the normality assumption of the recovered demand-side errors from the model. The parameter, \(k \), is not estimated in Misra-Nair. Here, we exploit additional data not used in that paper on the number of calls made by each agent \(i \) to a client \(j \) in month \(t \), which we denote as, \(k_{ijt} \). We observe \(k_{ijt} \) and obtain a rough approximation to \(k_i \) as \(k_i \approx \frac{1}{T} \sum_t \sum_j k_{ijt} \). The incorporation of \(k \) into the model does not change any of the other parameters estimated in Misra-Nair, and only changes their interpretation. We use these parameters for all the simulations reported below.

6 Results

We first discuss the results from the calibration of the agent type parameters. These are reported below. We use a set of 58 agents in our analysis who are all located in one division of the firm’s overall salesforce. The numbers we report have been scaled to preserve confidentiality; however, the scaling is applied uniformly and are comparable across agents. For purposes of intuition the reader should consider \(h \) and \(U^0 \) to be in millions of dollars. So roughly speaking, the median outside option in the data is about $86,400 while the average agent’s sales in the absence of effort would be close to a million dollars.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Statistic</th>
<th>(h)</th>
<th>(k)</th>
<th>(r)</th>
<th>(d)</th>
<th>(\sigma)</th>
<th>(U^0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>0.9618</td>
<td>1.0591</td>
<td>0.0466</td>
<td>0.0436</td>
<td>0.4081</td>
<td>0.0811</td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>0.9962</td>
<td>1.0802</td>
<td>0.0314</td>
<td>0.0489</td>
<td>0.3114</td>
<td>0.0864</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>0.5763</td>
<td>0.2642</td>
<td>0.0014</td>
<td>0.0049</td>
<td>0.0624</td>
<td>0.0710</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>1.4510</td>
<td>1.8110</td>
<td>0.3328</td>
<td>0.1011</td>
<td>1.5860</td>
<td>0.1032</td>
<td></td>
</tr>
</tbody>
</table>

The plan for the rest of the paper is as follows. We condition on the parameters above and solve for the optimal composition and compensation for the firm using the algorithm

4See also, Steenburgh (2008) and Larkin (2010) who note that effort is affected by how far away the agent is from his quota.
described previously. We then discuss these below, simulating two different scenarios. First, we simulate the fully heterogeneous plan where each agent receives a compensation plan (salary + commission) tailored specifically for him or her. We also simulate the partially homogenous contract where the commission rate is common across agents but the salaries may vary across individuals. In all the results presented below, we assume that when an agent is excluded from the salesforce, the territory provides revenues equal to τh with $\tau = 0.95$, and h is the intercept in the output equation. This assumption reflects the fact that even if a territory is vacated, sales would still accrue on account of the brand or because the firm might use some other (less efficient) selling approach like advertising. We also explored alternative assumptions (e.g. $\tau = 0$ and $\tau = 1$); these results are available from the authors upon request. Qualitatively, the results obtained were similar to those presented below. Below we organize our discussion by presenting details of the optimal composition chosen by the firm under these plans, and then present details of effort, sales and profits.

6.1 Composition

We start with the fully heterogeneous plan as a benchmark. We find all agents have positive profit contributions when plans can be fully tailored to their types. Consequently, the optimal configuration under the fully heterogeneous plan is to retain all agents (the “status quo”). This is not surprising as noted in our 3-agent simulation previously.

Simulating the partially heterogeneous compensation plans, we find the optimal composition in this salesforce would involve letting go of six salespeople. It is interesting to investigate the characteristics of the agents who are dropped and to relate it to that of the agent pool as a whole. In Figure (1) we plot the joint distribution of the primitive agent types $\{h, k, d, r, U^0, \sigma\}$ for all agents at the firm. The marginal densities of each parameter across agents is presented across the diagonal. Each point in the various two-way plots along the off-diagonals is an agent, and each two-way shows a scatter-plot of a particular pair of agents types, across the agent pool. For instance, plot [4,1] in Figure (1) shows a scatter-plot of risk aversion (r) versus the cost of effort (d) across all agents in the pool. Plot [1,4] is symmetric and shows a scatter-plot of cost of effort (d) versus risk aversion (r). The six agents who are not included in the optimal composition are represented by non-solid symbols, highlighted in red. For instance, we see that one of the dropped agents, represented as an “o”, has a high risk aversion (1st row), an average level of sales-territory variance (2nd row), an average level of productivity (3rd row), a low cost of effort (4th row), a low outside option (5th row), and a lower than average base level of sales (last row). This agent has a low cost of effort. However, his high risk aversion, his lower outside option, as well as his fit relative to the distribution of these characteristics across the rest of the agents, implies he is not included in the preferred composition. Figure (1) illustrates the importance of multidimensional heterogeneity in the composition-compensation tradeoff.
facing the principal, and emphasizes the importance of allowing for rich heterogeneity in empirical incentive settings.

In Figure 2, we plot the location of these salespeople on the empirical marginal densities of the profitability and sales across sales-agents. What is clear from Figure 2 is that there is no a priori predictable pattern in the location of these agents. In some cases, the agents lie at the tail end of the densities, though this does not hold generally. Further, the dropped agents are not uniformly at the bottom of the heap in terms of expected sales or profit contribution under the fully heterogeneous plan. For example, #33, one of the dropped agents, has expected sales of $1.70MM under the fully heterogeneous plan which would place him/her in the top decile of agents in terms of sales. In addition, he/she is also in the top decile across agents in terms of profitability. However, in his/her case the variance of sales is the highest in the firm, and this creates a large distortion in the contract via the effect it induced on the optimal commission rate (β). No including this agent allows the firm to improve the contract terms of other agents thereby increasing profits. Other agents are similarly not included on account of some other externality that impacted the compensation contract.

Figure 1 and 2 accentuates the difficulties of ranking agents as desirable or not on the basis of a single type-based metric and the need for a theory of value to assess sales-agents.

6.2 Compensation

We now discuss the optimal compensation implied for the firm under the optimal composition. We compare the fully heterogeneous plan to the partially homogenous plans with and without optimizing composition. Figure (3) plots the density of optimal commission rates under the fully heterogeneous plan along with those for the partially homogenous plans. The solid vertical lines are drawn at the common commission rate for the homogenous plans, with the blue vertical line corresponding to optimizing composition and the black corresponding to not optimizing composition. Looking at Figure (3), we see that the commission rates vary significantly across the sales-agents under the fully heterogeneous plans, going as high as 2.5% for some agents (median commission of about 1.2%). Under the partially homogenous plans, the optimal commission rates are lower. Interestingly, the ability to fine tune composition has significant bite in this setting. In particular, when constrained to not fine tune the salesforce, the firm sets an optimal common commission of about 0.5%. When it can also fine tune the salesforce, the firm optimally sets a higher commission rate of about 0.9%. When the firm is constrained by the compensation structure, the extreme agents (eliminated in the optimal composition) exert an externality that brings the overall commission rate down. By eliminating the “bad” agents, the firm is able to increase incentives. To what extent does this improve effort, sales and profitability? We discuss this next.
Figure 1: Joint Distribution of Characteristics of Agents who are Retained and Dropped from Firm under Partially Homogenous Plans
6.3 Effort and Outcomes

The profits for the firm under the fully heterogeneous plan are estimated to be around $60.56MM. We decompose profits with and without homogenous plans, with and without optimizing composition. As noted above, in our data all agents have positive profit contributions and consequently, the optimal configuration is identical to the status quo for compensation plans that are fully heterogeneous. Consequently profits for the fully heterogeneous plan under the optimal configuration and the status quo are identical. This is depicted in the first row of Table (1).

In contrast to the fully heterogeneous compensation structure, there is a significant difference in profit levels when compensation plans cannot be customized. Looking at the above table, partially homogenous plans with the ability to fine-tune composition come very close to the fully-heterogeneous plan in terms of profitability ($59.14MM compared to $60.56MM). But partially homogenous plans without the ability to fine-tune the salesforce
Figure 3: Optimal Commission Rates Under Fully Heterogeneous, Fully Homogenous and Partially Homogenous Plans
causes a distortion in incentives, and result in a profit shortfall of $3.36MM, bringing the total profits down to $55.78MM.

To decompose the source of profitability differences across the different scenarios, in Figures 4a and 4b we depict the empirical CDF of effort and sales under the three scenarios. The “status-quo” plan is the one that keeps the same composition as currently, but changes compensation. Both the sales and effort distributions under the fully heterogeneous plan fall to the right of the partially heterogeneous plans. However, Kolmogorv-Smirnoff tests show that the distribution of sales and effort under the composition and compensation optimized scenario is not statistically different from that under the fully heterogeneous plan. This is striking, since it suggests that by simply altering composition in conjunction with compensation a firm can reap large dividends in motivating effort, even under the constraints of partial homogeneity in contractual terms. This is also why the overall profits under the optimal composition with common commissions is so close to that under heterogeneous plans.

We now assess the extent to which profits at the individual sales-agent level under the partially homogenous plan combined with the ability to choose the composition of agents, approximates the profitability under the fully heterogeneous plan (the baseline or best-case scenario). In Figure 6, we plot the profitability (revenues – payout) of each agent under the fully heterogeneous plan on the x-axis, and the profitability under the partially homogenous plan with and without the ability to optimize composition on the y-axis. Solid dots represent profits when optimizing composition, while empty dots represent profits holding composition fixed at the status quo. Each point represents an agent. Numbers are in MMs. Looking at Figure 6, we see the ability to choose composition is important. In particular, the profitability at the agent-level when constrained to partially homogenous contracts and not optimizing composition lies much below the profitability under a situation where contracts can be fully tailored to each agent’s type. But, the ability to choose agents seems to be able to mitigate the loss in incentives implied by the constraint to homogeneity. The profitability under the composition-optimized, partially homogenous contracts come very close to that under fully tailored contracts.

We think this is an important take away. In the real-world, firms can choose both agents and incentives, and not incentives alone. Firms do face constraints when setting incentives. But, our results suggest that the profit losses associated with these constraints are lower when firms are also able to choose the type-space of the agents concomitant with incentives.

Mechanism

The question remains what is the mechanism that enables the firm to come close to the fully heterogeneous plan when it optimizes the composition of its agents? The intuition is straightforward. When constrained to set a homogenous plan, a firm can do much
Figure 4: Empirical CDF of Implied Effort and Sales Under Different Counterfactual Compensation and Composition Profiles
better if the agents it has to incentivize are more homogenous. Consider an extreme case
where the firm could find as many agents of any type for filling its positions (no search
costs for labor). Then, the firm would first pick the agent from who it could obtain the
highest profit (output − payout) under the fully tailored heterogeneous contract. It would
then fill the N available positions with N replications of that agent. Then, the uniform
commission it charges for the salesforce as a whole will be optimal for every agent in the
firm. In this sense, an increase in heterogeneity has two roles for a firm constrained to
uniform contracts. On the one hand, it increases the chance that high quality agents are
in the firm (a positive). But on the other hand, it also increases the level of contractual
externalities (a negative). The optimal composition has to balances these competing forces.

To see this more formally, consider a firm that has demand for two agents, which it
can fill with A or B type agents. Let Θ index type and suppose type A-s generate more
profit than B-s when employed at their individually optimal contracts:

$$Θ_A ≠ Θ_B \text{ but } E[\pi(\{A\})] > E[\pi(\{B\})]$$

Then, all things held equal, the firm would prefer composition \{A, A\} over \{B, B\},

$$E[\pi(\{A, A\})] > E[\pi(\{B, B\})]$$

Now suppose that types are such that A-s and B-s generate the same profit when employed
at their individually optimal contracts,

$$Θ_A ≠ Θ_B \text{ but } E[\pi(\{A\})] = E[\pi(\{B\})]$$

Then, even though individual profits are same, the firm would prefer to have the composi-
tion \{A, A\} or \{B, B\} over \{A, B\}, because composition \{A, B\} generates contractual
externalities,

$$E[\pi(\{A, A\})] = E[\pi(\{B, B\})] > E[\pi(\{A, B\})]$$

It is in this sense that the firm has a preference for heterogeneity reduction. Optimal
contracting requires the principal to satisfy both incentive rationality and incentive com-
patibility constraints for its chosen agents. Allowing for agent-specific salaries allows the
firm the satisfy incentive rationality for the agents it wants to retain. But the constraint
to a common commission implies that incentive compatibility becomes harder to satisfy
when the agent pool becomes more heterogeneous. Hence, a firm that can also choose the
pool prefers one that is relatively more homogenous, ceteris paribus.

To empirically assess this intuition, we compute two measures of the spread in the type
distribution of the salesforce under the optimal partially homogenous contracts with and
without the ability to choose agents. Assessing the dispersion in types is complicated by
the fact that the type-space is multidimensional. We can separately compute the variance-
covariance matrix of types in the salesforce under the two scenarios. To compute a single metric that summarizes the distribution of types, we define a measure of spread, d_M, as the trace of the variance covariance matrix of agent characteristics,\footnote{The trace of a matrix is the sum of its diagonals.}

$$d_M = \text{tr} \left(\Sigma_M \right) \tag{30}$$

We find that $d_{M_{\text{StatusQuo}}} = 78,891.6$, and $d_{M_{\text{Optimal}}} = 51,921.8$, where $d_{M_{\text{StatusQuo}}}$ is the trace under the optimally chosen partially homogenous plan while retaining all agents in the firm, and $d_{M_{\text{Optimal}}}$ is the trace under an optimally chosen partially homogenous plan while jointly optimizing the set of agents retained in the firm. We see that the optimal configuration involves about 34.2% reduction in heterogeneity. As another metric, we use $d_M = \det \left(\Sigma_M \right)$. The determinant can be interpreted as measuring the volume of the parallelepiped spanned by the vectors of agent types. To the extent the volume is lower, the spread in types may roughly be interpreted as lesser. We find that the determinant based measure of spread shows a 80.8% decline when the firm can pick its agents and incentives, relative to picking only incentives. Both illustrate that under the optimal strategy, the firm chooses agents such that the residual pool is more homogeneous. While this is intuitive, what is surprising is that its profits under this restricted situation come so close to what it would make under fully heterogeneous plans. This can only be assessed empirically.

To assess the intuition visually, we plot in Figure (5), the salaries and commissions of the entire set of agents when each could be offered his own tailored contract (i.e, the salary + commissions from the fully heterogeneous case). The green dots in Figure (5) denotes the agents who are retained in the optimal composition while the red dots denote the agents who are dropped. Also plotted is the convex hull of the salary/commission points. We see that the optimal configuration exhibits a degree of outlier aversion: the agents dropped from the optimal composition are all on the extremes of the distribution. Note at the same time, that being an outlier does not automatically imply an agent is dropped: we see that some agents on the edges are still retained, presumably on account of their higher abilities or better fit with the rest of the agents.

In an important paper, Raju and Srinivasan (1996) make an analogous point, that allowing for heterogeneous quotas in a common commissions setting can closely approximate the optimal salary + commission based incentive scheme for a heterogeneous salesforce when those quotas can themselves reflect agent specific differences. Our point is analogous, that a firm constrained to a homogenous slope on its incentive contract can come very close to the optimum by picking the region of agent-types that it wants to retain. However, the mechanism we suggest is different. Raju and Srinivasan (1996) suggest addressing the problem of providing incentives to a heterogeneous salesforce by allowing for additional heterogeneity in contract terms. We suggest addressing the problem of setting incentives to a heterogeneous pool of agents by making the salesforce more homogenous.
Figure 5: Optimal Composition displays a degree of Outlier Aversion

Note: x-axis: β_i, and y-axis: α_i, the commissions and salaries under the fully heterogeneous contracts case. Green dots denote agents retained in the optimal compositions; red dots denote agents dropped in the optimal composition.
In another contribution, Lal and Staelin (1986) and Rao (1990) show that a firm facing a heterogeneous salesforce can tailor incentives to the distribution of types it faces by offering a menu of salesforce plans. Their approach uses agents' self-selection into plans as the mechanism for managing heterogeneity, and requires the firm to offer a menu of contracts taking the salesforce composition as given. In our model, the firm offers only one contract to an agent, but chooses which agent to make attractive contracts to (thus, the margin of choice for agents in our model is not over contracts but over whether to stay in the firm or leave). Our model endogenizes the salesforce’s composition and may be seen as applying to contexts where offering a menu of plans to employees to choose from is not feasible, or desired. We think the three perspectives outlined above for the practical management of heterogeneity in real-world settings are complementary to each other. In the section below, we discuss the latter mechanism further.
6.4 Sorting Agents into Divisions

We now discuss whether we can further improve the management of heterogeneity in the firm by sorting agents into divisions. We consider a salesforce architecture in which the firm creates $|\mathcal{J}|$ divisions, and assigns each agent it retains to one of the $|\mathcal{J}|$ divisions. The divisions correspond to different compensation profiles. We allow each division to have its own commission, but require that all agents within a division are given the same commission. Salaries are allowed to be heterogeneous as before. Such architectures are commonly observed in the real-world. For instance, sales agents targeting large “key accounts” may be assigned into a division which offers more incentive pay, while those targeting smaller clients may be in a division that offers more salary than commission. Or alternatively, sales agents targeting urban versus rural clients may be in two different divisions each with its own commission scheme. But the observed empirical fact is that commissions are invariably the same within a division. This architecture reflects that.

For each value of $|\mathcal{J}|$ we solve simultaneously for the match between agents and divisions and the optimal commissions across divisions, along with the optimal salaries across agents given their assignment to a division. Formally, we solve the following modified bi-level optimization problem,

$$\max_{\mathcal{M}_j} \Pi = \sum_{j \in \mathcal{J}} \int \sum_{i \in \mathcal{M}_j} (S_i - W_{\mathcal{M}_j}(S_i)) dF(S_i|e_i), \quad \text{st.,}$$

$$W_{\mathcal{M}_j} = \arg \max_{W \in \mathcal{W}_N} \int \sum_{i \in \mathcal{M}_j} (S_i - W(S_i)) dF(S_i|e_i), \quad (\text{IR,IC})$$

where the last “adding-up” constraint ensures that a given agent is either assigned to one of $|\mathcal{J}|$ contracts. The incentive compatibility and rationality constraints IR and IC are not written out explicitly for brevity. In the final solution to above, the set \mathcal{M}_j assigns to each agent i, a number $\{0, 1, ..., j, ..., |\mathcal{J}|\}$, where 0 implies the agent is dropped from the firm, and $j > 0$ implies the agent is assigned to division j with wage contract $W_{\mathcal{M}_j}$. Our goal is to assess empirically how many divisions ($|\mathcal{J}|$) are required to fully span the heterogeneity and to come close to the profits under the fully heterogeneous case. Additionally, we want to assess the extent to which the ability to choose agents interacts with this mechanism for managing heterogeneity.

In Figure (7) we report on the results in which we simulated the profits to the firm from creating upto $|\mathcal{J}| = 6$ divisions. The x-axis of Figure (7) plots the number of divisions considered ($|\mathcal{J}|$). The y-axis of Figure (7) plots the total profits to the firm for each $|\mathcal{J}|$. Each point corresponds to solving the modified bi-level problem above for the corresponding
value of $|J|$. The green-line shows the profit profile in which we allow the firm to sort agents into divisions, but do not allow the firm to optimize the composition (i.e., in the bi-level program above, we do not allow $j = 0$ as an option). The blue-line in the figure shows the profit profile in which the allow the firm to sort agents into divisions and allow the firm to optimize the composition as described above. The difference in the profits under the blue versus the green lines indicates the extent to which composition choice adds to profitability over and above the ability to sort agents into divisions.

We first discuss the situation where we allow the firm to sort agents into divisions but do not allow the firm to choose composition. The top horizontal line in Figure (7) represents a profit of 60.56M, the maximum profit possible under the fully heterogeneous contract (see Table (1)). Looking at the green-line in Figure (7), we see that even without the ability to choose composition, the firm is able to come very close to this value with as less as 6 divisions. Even two divisions do a remarkably good job of managing heterogeneous incentives – profits under the green-line for the 2-division case are more than 59M. Thus, one empirical take-away is that a small amount of variation in contract terms seems to be sufficient to manage a large amount of heterogeneity in the firm, at least in the context of these estimates.

We now discuss the situation where we allow the firm to sort agents into divisions and to optimize its composition. We see the results are similar to the previous case, but the firm is able to achieve a higher level of profit gains with fewer divisions (the blue-line is always above the green-line). Thus, the ability to choose composition has bite even when one allows for sorting into divisions. With $|J| = 6$ divisions, we find the firm ends up dropping 5 agents from the optimal composition (compared to 6 agents with only one division). Thus, allowing for sorting does not automatically imply that composition choice is not needed – the right perspective is that sorting and composition-choice are two strategies to manage heterogeneity, and when used in combination, unlock powerful complementaries in the provision of firm-wide incentives.

Finally, we show that heterogeneity reduction plays a role in improving profitability with sorting. In Figure (8) we plot the log-distortion implied by the divisions against the number of contracts offered. The distortion metric is simply a way to summarize the average heterogeneity within a division. It captures the mean squared deviation from the average salesperson across divisions. Formally, let θ_{ij} denote the 6×1 vector of characteristics for agent i allocated to division $j > 0$ and let $\theta_{ij}^{(r)}$, $r = 1, \ldots, 6$, denote the rth element of θ_{ij}. Denoting N_j as the number of agents allocated to division j, let $\bar{\theta}_{j}^{(r)} = \sum_{i=1}^{N_j} \theta_{ij}^{(r)}/N_j$ be the average value of characteristic r inside division j. We define the distortion as,

$$d_M = \min_r \frac{1}{|J|} \sum_{j=1}^{|J|} \left(\theta_{ij}^{(r)} - \bar{\theta}_{j}^{(r)} \right)^2$$

(31)
In Figure (8), the lower line (red) corresponds to the model which allows for composition to be optimized jointly with division-specific commissions, while the top line (blue) ignores the composition aspect. As one would expect, as more contracts are added to the compensation structure, the distortion falls but allowing the firm to manage composition results in a more significant reduction. In essence, with a small number of contracts, the firm finds it optimal to eliminate the outlying agents and use the increased flexibility to better compensate those that are retained. As a result the heterogeneity in the retained agent pool is managed much better. Ultimately, as the number of contracts increase to match the total number of agents, the two curves would coincide. That is, if every agent got a customized contract there would be no distortion. The broad point is that sorting and composition choice together enable very effective management of heterogeneity even with restricted contracts.
Discussion

We developed the above exercise under the assumption that the firm knows each agent’s type perfectly and can sort agents into divisions based on that knowledge. As mentioned above, the theory has emphasized an alternative mechanism in which the firm offers a menu of contracts to all and the agent self-selects into one of the offered contracts based on his unknown type (this is analogous to nonlinear pricing). This strategy helps manage heterogeneity when the firm does not know types perfectly and emphasizes adverse-selection as the main difficulty in contract design, as opposed to the moral hazard we emphasize. In practice, it is likely that both are at play in many real-world contexts. Optimal contract design with both adverse-selection and moral hazard is beyond the scope of this paper. In salesforce contexts, we believe the approach we have outlined above is more realistic than self-selection contracts. First, unlike nonlinear pricing, self-selection contracts are rarely observed in salesforce compensation (perhaps due to concerns with dynamic signaling – if an agent chooses a contract with low commissions, he signals his type to the principal which can be used to update his contracts in subsequent periods). The more common observation is of salesforce divisions and of assignment of agents into divisions. Second, adverse-selection in salesforce settings is usually addressed by monitoring, probation and training. New hires are often placed on a salary-only probation period in which their performance is observed. The employment offer is made full-time conditional on satisfactory performance in the probation period. New hires are also provided significant sales training during the probation period and asked to “shadow” an established sales-rep where real-time training is imparted and performance on the field is observed. This monitoring helps the
firm assess agent types before full-time offers are made. Thus, in our view, for long-run salesforce composition and compensation with full-time sales agents, adverse selection may be a second-order consideration. A limitation of our model is that it does not apply to the interesting dynamics outlined above associated with new employee hiring and learning.

Finally, if the firm does not know types perfectly, the profits it can make when offering a menu of divisions is strictly lower than the profits it can make when it knows types perfectly and can assign each type to its preferred division (as in the simulations above). We reported above that when types are known perfectly, firms still gain from the ability to choose composition. We interpret this as implying that even if a menu of contracts are offered, the ability to choose agents that we emphasize, will still have bite in terms of profits in the context of our empirical example.

7 Conclusions

We consider a situation where a firm that is constrained to set partially homogenous contracts across its agent pool can optimize both its composition and its compensation policy. We find that the ability to optimize composition partially offsets the loss in incentives from the restriction to uniform contractual terms. Homogeneity also implies a particular type of contractual externality within the company. The presence of an agent in the firm indirectly affects the welfare and outcomes of another through the effect he induces on the common element of contracts. This externality exists even in the absence of complementarity in output across agents, team production, common territories or relative incentive terms. Simulations and an application to a real-world salesforce suggest that the ability to choose composition has empirical bite in terms of payoffs, sales-effort and sales.

The paper explores the consequences of uniformity, but not the reasons for uniformity in contracts within firms. Motivations for uniformity could be sales-agent inequity aversion, concerns for fairness in evaluation, preferences for simplicity, or different kinds of menu costs. In some survey evidence, Lo et al. (2011) conduct field-interviews with managers at industrial firms in four sectors (namely, electrical and non-electrical machinery, transportation equipment and instruments), and report the two main reasons managers cite for not using agent-specific salesforce compensation plans are (a) computational costs of developing complex plans, and, (b) costs associated with managing ex post conflict amongst salesagents induced by differential evaluation. Relatedly, in a survey of 130 business-format franchisors, Lafontaine (1992) reports that 73% of surveyed franchisors choose uniform royalty rates due to reasons of consistency and fairness towards franchisees, and 27% reported choosing uniformity because it reduces the transaction costs of administering and enforcing contracts. It seems therefore that fairness and menu costs play a large role in driving such contract forms. Notwithstanding the reasons, the fact remains that the ability to choose agents and the restriction to partially homogenous contracts is pervasive in real-world business settings. However, principal-agent theory is surprisingly silent on both endoge-
nizing the composition of agents, and exploring the consequences of uniformity. We hope our first-cut on the topic will inspire richer theory and empirical work on the mechanisms causing firms to choose similar contracts across agents, and on the consequences of these choices.

We abstracted away from hiring and from the principal’s policies for learning new hires’ types. Accommodating these complicates the model by introducing dynamics, but does not change our main point about contractual externalities and the codependence of compensation and composition when contracts cannot be tailored. In our data, we do not have a way of estimating the distribution of worker types in the population or the distribution of search costs for labor amongst firms in this market, both of which are critical inputs to a credible empirical model of labor market sorting. With access to better data, an extension of this sort could be pursued. The reader should note that such competition in contracts across firms have relatively been understudied in empirical work.

Finally, another margin along which the principle may manage heterogeneity is to optimize the match between agents and territories (e.g., Skiera and Albers 1998). Analyzing this matching problem while endogenizing the compensation contract is outside the scope of this paper, but is the subject of our ongoing work.

While our context is salesforce compensation, similar ideas to the one explored here arise in other contexts of interest to Marketing. One area is joint choice of consumers and promotions. For instance, Belloni et al. (2012) discuss an algorithm that enables a University to jointly choose a desirable mix of students and the level of scholarships required to attract them. The complication associated with salesforce compensation relative to these situations is the presence of moral hazard. To the extent that we discuss the implications of endogenizing the mix of agents at a firm, we believe our analysis motivates development of richer empirical models of the joint choice of who and how to offer product options to consumers in Marketing and Economics.
8 References

A Appendix: Behavior of Conditional Value Function with N

The conditional value function is plotted over β in Figure (9) for various pool sizes N. The data is simulated by spreading a small amount of lognormal noise around parameters $(d, r, U^0) = (1, 2, 0)$.

In the first quadrant, the conditional value function is seen to be continuous and piecewise differentiable. The kinks are at the points where some agent’s IR constraint just binds and the agent either enters or exits the composition. At all other points, the criterion is a simple sum of continuous and differentiable functions. At $N = 5$, the conditional value function is seen to smooth out. The reader will note that the criterion has two local maximums, one at slightly below and one slightly above 0.2.

The condition is seen to smooth further out at $N = 10$ and $N = 5000$. The optimization search algorithm depends linearly on N since only the profit contributions of each agent must be calculated at each iteration. For all N in this example, the optimization is executed in less than $\frac{1}{10000}$th of a second using standard numerical derivatives based methods of optimization. The algorithm implicitly allows a directed search of a space of 2^{5000} elements rather than searching the power set of N directly, which is computationally efficient.

At $N = 5000$, the criterion is seen to be almost completely smoothed out. The smoothing is not an asymptotic property, but follows from the continuous underlying density of the example with infinite support of the characteristics. At any point, there is asymptotically almost surely some agent either entering or exiting the composition which smoothes out the kinks. Though the conditional value function has a clearly accentuated maximum $\beta \in [0, 1]$, this is not a general feature of the problem. The problem generically may have many local maxima.
Figure 9: Criterion Function for Various Composition Sizes