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Abstract

This article proposes a distributed Markov chain Monte Carlo (MCMC) algorithm for esti-
mating Bayesian hierarchical models when the number of cross-sectional units is very large and
the objects of interest are the unit-level parameters. The two-stage algorithm is asymptotically
exact, retains the flexibility of a standard MCMC algorithm, and is easy to implement. The
algorithm constructs an estimator of the posterior predictive distribution of the unit-level pa-
rameters in the first stage, and uses the estimator as the prior distribution in the second stage
for the unit-level draws. Both stages are embarrassingly parallel. The algorithm is demonstrated
with simulated data from a hierarchical logit model and is shown to be faster and more effi-
cient (in effective sample size generated per unit of computing) than a single machine algorithm
by at least an order of magnitude. For a relatively small number of observations per cross-
sectional unit, the algorithm is both faster and has better mixing properties than the standard
hybrid Gibbs sampler. We illustrate our approach with data on 1,100,000 donors to a charitable
organization, and simulations with up to 100 million units.
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1 Introduction

Many problems in marketing and economics, and in particular target marketing, require unit-

specific decisions such as which online advertisement to show, what prices to charge, or which

promotion to offer. Targeted strategies have become increasingly popular. This popularity is, in

part, facilitated by the availability of large panel data sets. In principle, these panels allow for

unit-level inferences which can form the basis of optimal customised unit-level strategies. Typically,

these panels have a very large number of cross-sectional units, N (> 1, 000, 000), but much smaller

numbers of observations per unit, T (< 50). The limited number of observations per unit necessitate

the use of inference procedures that allow for information to be shared across units.

While it is well-recognized that Bayesian hierarchical models are ideally suited for panel data

problems in which unit-level parameters are desired, panel datasets with very largeN pose significant

computing challenges for existing algorithms. Typically, inference in these models is conducted via

a hybrid MCMC algorithm (Rossi, Allenby, and McCulloch, 2005) running on a single processor

(see, for example, the rhierMnlRwMixture function in the R package, bayesm). When the number

of units is very large, it is not feasible to simulate from unit-level posterior distributions within

a reasonable amount of time, due to processor bottlenecks. Some suggest using only a sample

of the cross-sectional units to reduce computational burden. Obviously, this approach does not

produce individual level parameter estimates for all units and therefore cannot be used in a modern

world characterized by customized and target marketing. Less obviously, we demonstrate that

even relatively large subsamples of units can produce misleading inferences even about common

parameters such as the degree of heterogeneity in the data.

Another approach to addressing the resource limitation problem is to distribute the data and

simulations across multiple machines. In particular, when estimating a Bayesian hierarchical model,

an easy-to-implement distributed algorithm is to simulate the common parameter draws on the

master machine and to distribute the simulation of the unit-level parameter draws across multiple

worker machines. However, the communication costs associated with transmitting data between

machines on each iteration is prohibitively expensive and not practical (Scott et. al, 2016). Our
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own simulations find that although there is an improvement in effective sample size generated per

unit of computing, it is marginal compared to the fully distributed approach we introduce in this

article. Results are available from the authors.

Bardenet et al. (2015) broadly classify Bayesian MCMC algorithms for big N into two groups,

distributed and subsampling algorithms. Distributed approaches parallelize computation in a dis-

tributed computing environment, whereas subsampling algorithms reduce the number of individual

data point likelihood evaluations on a single computer. Although these big N algorithms were not

conceived for hierarchical models, they may be adapted albeit at significant cost. The crux of the

matter is that Bayesian hierarchical models do not easily lend themselves to embarrassingly parallel

estimation when the objects of interest are both the unit-level and the common parameters, or to

subsampling when the number of observations per unit is not very large. We elaborate in Section 2

why current methods don’t work well with hierarchical models.

We propose a distributed MCMC algorithm for hierarchical models that simulates draws from

the unit-level posterior distributions. It consists of two stages: (i) an MCMC algorithm for the

construction of an estimator for the posterior predictive distribution of the unit-level parameters,

and (ii) an independence Metropolis-Hastings or direct sampling algorithm for the simulation of unit-

specific parameter draws, using the first stage estimator as the prior. The method is asymptotically

exact in that it does not impose any distributional assumptions or approximations on the posterior of

the unit-level parameters when the number of units allocated to each worker machine is sufficiently

large. Further, it retains the central ideas and flexibility of any standard MCMC algorithm (e.g.

hybrid Gibbs sampler) for which any prior may be stipulated, such as a mixture of distributions.

While our focus is not on recovering draws of the common parameters, these draws may be easily

simulated by conditioning on the available unit-level draws.

The algorithm performs well: for non-standard posterior distributions, unit-level posterior den-

sities converge to those of the “gold standard” single machine hybrid Gibbs algorithm much more

efficiently (as measured by effective sample size per minute). For small T , the proposed algorithm

is more than an order of magnitude faster and more efficient than the single machine hybrid Gibbs

algorithm. For large T , the algorithm is still faster by an order of magnitude but efficiency decreases
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to about an order of magnitude greater. For standard posterior distributions, gains are expected

to be independent of the number of observations per unit. The algorithm is tested on a large-scale

cluster computing system and is found to scale very well to 100 million units. This is particularly

important when the high precision that a big N method enables is critical to the application of

interest. To further boost speed and efficiency, we propose a subsampling algorithm which samples

the data in the first stage.

The remainder of this paper is organized as follows. Section 2 discusses the related literature. In

Section 3, we describe the proposed distributed MCMC algorithm for hierarchical models. Section

4 demonstrates the algorithm using simulated data by estimating a hierarchical logit model, and

compares the results with those of the single machine hybrid Gibbs algorithm. In Section 5, we

illustrate our method using a large panel of charitable donors. We conclude in Section 6.

2 Related Literature

There is a substantial literature on Bayesian inference for large data sets that do not have a panel

structure. For extremely large N , it may be very costly to evaluate the full posterior and, therefore,

a wide variety of proposals have been made that use some sort of distributed processing approach

which breaks the problem down into subproblems, each one with a managable N . Still other

proposals emphasize subsampling to reduce computational requirements. In this section, we will

review these proposals and explain how these methods can be difficult to extend to the hierarchical

setting without compromising the accuracy or the computational gains that can be realized from a

distributed processing environment.

The generical hierarchical model can be written:

yit ∼ p (yit |βi ) for i = 1, ..., N and t = 1, ..., Ti (2.1)

βi ∼ p (βi |θ ) for i = 1, ..., N (2.2)

θ ∼ p(θ |τ ) (2.3)
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p (yit |βi ) is the probability of observing yit at time t for unit i, N is the number of cross-sectional

units, Ti is the number of observations for unit i, βi are the unit-level parameters. There is a

standard two-stage prior with p (βi |θ ) as the first-stage. We refer to θ as common parameters with

prior density p(θ |τ ) and hyper-parameters τ . Although Ti is unit-dependent, we let Ti = T for

notational simplicity.

Bardenet et al.’s (2015) discussion of distributed algorithms focuses on those of Scott et al.

(2016) and Neiswanger et al. (2014). These algorithms are designed to estimate single layer (not

hierarchical) models in an embarrassingly parallel manner, and may be extended to hierarchical

models with a two-stage approach, as suggested by Scott et al. (2016). For each of the two stages,

the full data Y = {yit} is partitioned into S shards such that all of the observations for a unit are

in the same shard Ys = {yit}i∈Is , where Is is a vector indicating the units allocated to shard s. The

first stage simulates both the common θ and unit-level {βi} parameter draws with S parallel MCMC

simulations (each shard on a separate worker machine), discards the unit-level parameter draws,

and algorithmically combines the S collections of common parameter draws for each iteration of

the MCMC algorithm. The second stage draws the unit-specific parameters in an embarrassingly

parallel manner (each shard of units on a separate worker machine), given the synthesized common

parameter draws from the first stage.

The algorithmic combining of the common parameter draws is based on expressing the posterior

for the common parameters as the product of S subposteriors. In simplified notation to more clearly

illustrate the idea,

p (θ |Y ) ∝
∏
s

p (θ |Ys ) (2.4)

=
∏
s

p (Ys |θ ) p (θ)1/S (2.5)

where the full data prior is p (θ) =
∏S
s=1 p (θ)1/S . In our notation for model (2.1-2.3), p (θ |Y ) =

p (θ, {βi} |Y, τ ), p (Ys |θ ) = p
(
Ys, {βi}i∈Is |θ

)
=
∏
i∈Is p (βi |θ )

∏
t p (yit |βi ), and p (θ) = p(θ |τ ). We

omit τ and βi in (2.4-2.5) for additional clarity.

Given the S collections of common parameter draws (from the S worker machines), the ap-
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proaches of Scott et al. (2016) and Neiswanger et al. (2014) differ in how they algorithmically

synthesize a single collection of draws from the full data posterior distribution. On the rth iteration

of an MCMC simulation, Scott et al. (2016) synthesize the combined draw θr with a weighted

average of the rth draw of θ from each of the S shards, θrs .

θr =

(∑
s

Ws

)−1(∑
s

Wsθ
r
s

)
(2.6)

where the weight Ws = Σ−1s and Σs = V ar (θs |Ys ).

Several comments about the algorithm are appropriate. First, if subposteriors have disjoint

support, a posterior that is the product of subposteriors is poorly approximated (Bardenet et al.,

2015). Second, if p (θ) is a known standard parametric distribution, it is not necessarily the case that

p (θ)1/S is also a known standard parametric distribution. The modeler must either approximate

p (θ)1/S with a suitable parametric distribution, or revert to a possibly less efficient Metropolis-

Hastings algorithm for the simulation of θ draws. Third, although the algorithm is exact if p (θ |Ys )

is normal (since p (θ |Y ) is also normal), it is approximate otherwise.

Forth, the algorithm requires that the parametric distribution for the unit-level parameters

p (βi |θ ) be limited to a single component distribution (e.g. normal), due to a problem akin to the

label switching problem in Bayesian mixture modeling. Mixture component draws from different

shards are independent and do not share a natural correspondence as a basis for combining their

draws. For example, θ draws from mixture component k in shard 1 is independent of θ draws from

mixture component j in shard 2. Component k in shard 1 may represent a high-probability region

of θ whereas component j in shard 2 may represent a non-overlapping low-probability region. It

would be inappropriate to algorithmically combine their draws since they represent different and

unrelated components.

Neiswanger et al.’s (2014) distributed (nonparametric density product estimation) MCMC al-

gorithm has an advantage over that of Scott et al.’s (2016) in that it does not require a normal

posterior or subposteriors for exactness. It is asymptotically exact for any posterior. To synthesize

the combined draws, they first use kernel density estimation with a normal kernel to construct S
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shard-specific density estimators p̂ (θ |Ys ) for the densities of each shard’s parameters.

p (θ |Ys ) =
1

R

∑
rs

φ
(
θ
∣∣θrss , h2Id ) (2.7)

where h is a smoothing parameter, and θrss is the rsth draw of θ for shard s.

The full data posterior density estimator is the product of these S shard-level estimators.

p (θ |Y ) ∝
∏
s

p (θ |Ys ) (2.8)

=
1

RS

∏
s

∑
rs

φ
(
θ
∣∣θrss , h2Id ) (2.9)

∝
∑
r1

· · ·
∑
rS

w{r1,...,rS}φ

(
θ

∣∣∣∣θ̄{r1,...,rS}, h2S Id
)

(2.10)

where θ̄{r1,...,rS} = 1
S

∑
s θ

rs
s and w{r1,...,rS} =

∏
s φ
(
θrss
∣∣θ̄{r1,...,rS}, h2Id ). p (θ |Y ) is a mixture of RS

normal densities with unnormalized mixture weights w{r1,...,rS}. The synthesized draw for iteration

r, θr, is drawn from p̂ (θ |Y ) in two steps: (i) drawing a mixture component {r1, . . . , rS} with an

independence Metropolis with Gibbs sampler (Neiswanger et al., 2014), and (ii) drawing θr from

this mixture component.

The algorithm has several limitations. First and second, like Scott et al. (2016), if subposteriors

have disjoint support, the posterior is poorly approximated, and p (θ)1/S may not be a known stan-

dard parametric distribution. Third, the computational complexity of the algorithm is quadratic

with S (the authors also suggest an alternative algorithm whose complexity is linear with S) sug-

gesting that it’s complexity may materially impact the computational advantages of a distributed

approach for large values of S. Fourth, since the method is based on kernel density estimation, we

do not expect it to scale well as the dimension of the parameter space becomes large, due to the

curse of dimensionality. Fifth, the bound on the mean-squared-error of the approximated posterior

explodes exponentially with the number of shards S (Bardenet et al., 2015).

Bardenet et al. (2015) also mention distributed algorithms that avoid multiplying the S sub-

posteriors. Instead, subposteriors may be combined by their barycenter or median. The challenge
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with these combinations is that their statistical meaning is unclear.

As we explain in Section 3, our proposed distributed algorithm does not suffer from any of the

above limitations. Although the algorithm is asymptotically exact, the approximation error for

finite N is quantified as a function of the number of shards S so that it is under the control of the

practitioner.

Bardenet et al. (2015) also present an overview of subsampling-based algorithms for single layer

models. Subsampling algorithms run on a single computer with all of the data in memory. Their

computational benefit comes from a reduction in the number of individual data point likelihood

evaluations that are necessary at each MCMC iteration. Subsampling methods may be applied to

the estimation of Bayesian hierarchical models in primarily two ways: (i) subsampling the unit-level

draws {βi} to draw the common parameters θ, and (ii) subsampling a unit’s T observations to draw

βi. In a typical MCMC algorithm that alternates between draws of {βi} and θ, and when N is

huge, it may be advantageous to subsample the {βi} draws to compute the log-likelihood and ratio

for making an acceptance decision for the proposal draw. Although there are computational gains

to be made at each iteration of the θ draws if N is extremely large, say millions, we argue that

these savings are minuscule compared to the amount of computation required to draw the N unit-

level draws at each iteration. This is especially true if p (βi |θ ) and p(θ |τ ) are conjugate, in which

case, the θ draws are already extremely fast. The opportunity for substantial computational gains

seems most appropriate for subsampling the unit-level data for the unit-level draws for non-standard

posteriors. However, when applied in our context of drawing unit-level parameters in a hierarchical

model with not large T , it is doubtful whether subsampling algorithms that are designed for very

large T may be of value.1

1For target posteriors that may be well approximated by the Bernstein-von Mises approximation, Bardenet et
al.’s (2015) improved confidence sampler is shown to exhibit excellent variance, mixing, and scalability properties.
However, this algorithm is designed for subsampling in cases of very large sample size (they consider subsampling,
samples of size 1,000 from datasets with up to 10,000,000 observations). In our context, we are unlikely to have
samples of size much larger than 50 for each of our many units. It is not clear how the Bardenet proposal could be
adapted to the hierarchical setting as this would require subsampling units not observations within unit.
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3 The Proposed Algorithm

The central idea of the proposed two-stage algorithm is to construct an estimator for the posterior

predictive distribution of the unit-level parameters in the first stage, and to use the estimator as

the prior distribution in the second stage. Both stages are embarrassingly parallel.

We proceed as follows. After defining the Bayesian hierarchical model, we guide the reader

through the development of the proposed algorithm by presenting a sequence of three algorithms.

Algorithm A1 is the standard Gibbs algorithm, a serial MCMC procedure. Algorithm A2 is equiv-

alent to A1 in that they both share the same posterior for the unit-level parameters. It consists of

two serial stages, an algorithm for constructing an unbiased estimator of the posterior predictive

distribution in the first stage, and an algorithm for drawing the unit-level draws in the second

stage. The advantage of A2 over A1 is that it is parallelizable. Algorithm A3 proposes an embar-

rassingly parallel implementation of A2 in the first stage to construct an asymptotically unbiased

(approximate) estimator of the posterior predictive distribution, and in the second stage to draw

the unit-level parameters.

3.1 The Model

For the reader’s convenience, we reproduce the standard Bayesian hiearchical model here.

yit ∼ p (yit |βi ) for i = 1, ..., N and t = 1, ..., Ti (3.1)

βi ∼ p (βi |θ ) for i = 1, ..., N (3.2)

θ ∼ p(θ |τ ) (3.3)

where {βi} are the unit-level parameters and θ represents the common parameters.

The joint posterior distribution of the model parameters {βi} and θ is

p ({βi} , θ |τ, Y ) ∝ p(θ |τ )
∏
i

[
p (βi |θ )

∏
t

p (yit |βi )

]
(3.4)

where Y = ∪i {yit}Tt=1 is the full data of observed outcomes and covariates (we omit the covariates
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for notational convenience). The posterior full conditional densities are

βi |θ, yi ∝ p (βi |θ )
∏
t

p (yit |βi ) for i = 1, ..., N (3.5)

θ |{βi} , τ ∝ p(θ |τ )
∏
i

p (βi |θ ) (3.6)

where yi = {yit}Tt=1. We assume that p(βi |θ ) and p (yit |βi ) are not conjugate so that p (βi |θ, yi ) is a

nonstandard distribution. We discuss the simpler conjugate case in a separate section of the paper.

We introduce the following notation. p (θ |Y ) and p (βi |Y ) are the posterior marginal distributions

of the common and unit-level parameters given data Y , respectively.

3.2 Gibbs Algorithm A1

A standard (hybrid) Gibbs algorithm (A1) to sample from (3.5 - 3.6) iterates between draws of {βi}

and θ: (i) p (βi |θ, yi ) is nonstandard and thus necessitates a Metropolis-Hastings algorithm, and (ii)

if p(θ |τ ) and p (βi |θ ) are conjugate, as is usually case, p (θ |{βi} , τ ) is a standard distribution from

which θ may be sampled directly. Of course, estimation of (3.4) may be implemented with other

MCMC schemes. Our proposed algorithm is agnostic to the MCMC procedure used for estimating

(3.4) and the parametric form of p (βi |θ ) (or whether it is a mixture).

A1 is not designed to fully take advantage of distributed processing capabilities for estimation

purposes. For example, an obvious parallel estimation strategy for A1 is to estimate each βi (or

partition of βis ) given θ in parallel across multiple computing units. The limitation of this approach

is that each parallel process needs an updated θ draw for each iteration of βi draws (and conversely,

each θ draw requires updated {βi} draws). The problem is that communicating the θ draws to each

parallel process on each iteration is prohibitively expensive across multiple computers (Scott et. al,

2016).
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3.3 Equivalent Algorithm A2

Since the objects of interest in this article are the unit-level parameters {βi}, we may integrate out

θ in (3.5) to draw from the posterior marginal density of βi

p (βi |Y ) ∝
∫
p (βi |θ )

∏
t

p (yit |βi ) p (θ |Y ) dθ (3.7)

=

∫
p (βi |θ ) p (θ |Y ) dθ

∏
t

p (yit |βi ) (3.8)

= Eθ [p (βi |θ )]
∏
t

p (yit |βi ) (3.9)

= p (βi |{β})
∏
t

p (yit |βi ) (3.10)

where p (θ |Y ) is the posterior marginal distribution of θ, and Eθ [p (βi |θ )] is the posterior predictive

density of βi (Appendix: Theorems) which we denote as p (βi |{β}). The posterior predictive density

of βi is the density of βi for a unit whose data yi has not yet been observed, given {βj 6=i} (Gelman et

al., 2014). The cost of drawing βi from (3.10) is that we need p (βi |{β}), a mathematical object. Let

ṗ (βi |{β}) denote the estimator of the posterior predictive density p (βi |{β}), which we construct

as

ṗ (βi |{β}) =
1

R

∑
r

p(βi |θr ) (3.11)

where θr is the rth draw of θ from p (θ |Y ), and R is the total number of draws. ṗ (βi |{β}) is an

unbiased estimator of p (βi |{β}) (Appendix: Theorems).

Since we cannot draw βi from (3.10), we replace p (βi |{β}) in (3.10) with ṗ (βi |{β}) to draw

from

ṗ (βi |{θr} , Y ) ∝ ṗ (βi |{β})
∏
t

p (yit |βi ) (3.12)

=
1

R

∑
r

p(βi |θr )
∏
t

p (yit |βi ) (3.13)

where {θr} denotes the collection of R draws of θ from p (θ |Y ).
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ṗ (βi |{θr} , Y ) is an unbiased estimator of p (βi |Y ), which follows from the unbiasedness of

ṗ (βi |{β}). As a consequence, Beaumont (2003) shows that the posterior marginal distribution

ṗ (βi |Y ) induced by ṗ (βi |{θr} , Y ) equals p (βi |Y ) (Appendix: Theorems). Andrieu and Roberts

(2009) present theoretical properties of Beaumont’s (2003) findings.

The construction of ṗ (βi |{β}) requires draws from p (θ |Y ). This suggests a two-stage algorithm

A2 that is equivalent toA1 for the {βi} draws. Stage one draws from p (θ |Y ) to construct ṗ (βi |{β}),

and stage two draws βi from ṗ (βi |{θr} , Y ).

For the first stage we run algorithm A1 (3.5 - 3.6), discard the {βi} draws, and keep the θ draws

to construct ṗ (βi |{β}) using (3.11). For the second stage, given ṗ (βi |{β}), we draw βi

βi |yi ∝ ṗ (βi |{β})
∏
t

p (yit |βi ) for i = 1, ..., N (3.14)

Since drawing from (3.14) only requires data yi and ṗ (βi |{β}), βi draws may be implemented

in an embarrassingly parallel manner. We propose an independence Metropolis-Hastings algorithm,

although any MCMC algorithm will suffice. The particular advantage of an independence algorithm

when T is small is made more explicit in the next section.

3.4 Distributed Algorithm A3

Algorithm A3 is an embarrassingly parallel implementation of A2. Stage one constructs an asymp-

totically unbiased estimator of ṗ (βi |{β}). The cost of parallelization is asymptotic unbiasedness.

Stage two implements the second stage of A2 in parallel. An outline of both stages is in Algorithm

A3 (for non-standard posterior distributions).

3.4.1 Stage One

The first stage of the proposed algorithm (A3) constructs an estimator for the posterior predictive

density of βi in an embarrassingly parallel manner by running algorithm A1 (3.5 - 3.6) on mutually

exclusive subsets of the data. The full data Y is partitioned into S shards such that all of the data

for unit i are in the same shard: Ys = ∪i∈Is {yit}
T
t=1, s = 1, ..., S, Is is a vector indicating the units

12



allocated to shard s. The joint posterior distribution of the model parameters for each shard is

p ({βi} , θs |τ, Ys ) ∝ p(θs |τ )
∏
i

[
p (βi |θs )

∏
t

p (yit |βi )

]
for i ∈ Is (3.15)

Although any standard MCMC algorithm may be used to estimate (3.15) we propose a hybrid Gibbs

sampler (3.5-3.6). Algorithm A1 is run across machines, one shard per machine.

βi |θs, Ys ∝ p (βi |θs )
∏
t

p (yit |βi ) for i ∈ Is (3.16)

θs
∣∣{βi}i∈Is , τ ∝ p (θs |τ )

∏
i∈Is

p (βi |θs ) (3.17)

The {βi}i∈Is draws are discarded and the θs draws are used to construct an unbiased estimator for

the subposterior predictive distribution of βi for shard s, which we denote as ṗ (βi |{β}s )

ṗ (βi |{β}s ) =
1

R

∑
r

p(βi |θrs ) (3.18)

where θrs is the rth draw of θ for shard s, and R is the total number of draws.

We define the estimator of ṗ (βi |{β}) as the mean of the estimators for the shard-level subpos-

terior predictive densities.

p̈ (βi |{β}) =
1

S

∑
s

ṗ (βi |{β}s ) (3.19)

=
1

SR

∑
s

∑
r

p(βi |θrs ) (3.20)

We denote the number of units per shard as Ns = N/S and show (Appendix: Theorems) that

p̈ (βi |{β}) is an asymptotically unbiased estimator of ṗ (βi |{β}). For finite N , p̈ (βi |{β}) has

variance proportional to S/N = N−1s , whereas ṗ (βi |{β}s ) has variance proportional to S2/N =

SN−1s . As expected, averaging shard-level subposterior predictive densities reduces variance by a

factor of S.

A distinctive feature of the proposed algorithm is that it does not algorithmically combine

the {θrs} draws to synthesize single machine {θr} draws. The proposed algorithm uses the {θrs}
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draws to construct p̈ (βi |{β}) , a mathematical procedure that does not require computation. The

computational complexity of the proposed algorithm is therefore independent of the number of

shards.

We may decrease communication overhead between stages one and two by drawing the proposal

draws (from p̈ (βi |{β})) in stage one, for the independence Metropolis-Hastings algorithm in stage

two. Since R draws from p̈ (βi |{β}) is probabilistically equivalent to R
S draws from each of the

S estimators ṗ (βi |{β}s ), we can decrease communication costs between machines by returning

R
S draws of βi from each worker machine. The combined R draws from p̈ (βi |{β}) represent the

proposal draws for stage two of the algorithm. Drawing from ṗ (βi |{β}s ) = 1
R

∑
r p(βi |θrs ) is

straightforward: draw a multinomial distributed indicator vector with parameter vector
(
1
R , ...,

1
R

)
to determine the active component r, and then draw a d-variate vector from the rth component of

ṗ (βi |{β}s ) using parameters θrs , where d is the dimension of the parameter vector βi.

Compared to a naive implementation of extant methods (Scott et al., 2016; Neiswanger et al.,

2014), the communication efficiency gains are two-fold: (i) first stage communication costs from

each worker machine to the master machine are reduced from R draws of θs to R
S draws of βi, and

(ii) second stage communication costs from the master machine to each worker machine are reduced

from R draws of θs to R draws of βi. For example, if βi is a d-dimensional vector, and p(βi |θ ) is

the normal distribution, θ represents the mean and covariance parameters for a normal distribution

which requires d + d(d+1)
2 parameters. Communication cost is reduced from R

(
d+ d(d+1)

2

)
to R

S d

in stage one, and from R
(
d+ d(d+1)

2

)
to Rd in stage two.

3.4.2 Maximum Number of Shards

Since p̈ (βi |{β}) is an asymptotically unbiased estimator of ṗ (βi |{β}), it is approximate for finite

Ns. Although the bias goes away as Ns becomes large, it is of practical importance to bound the ap-

proximation error for finite Ns . For the practitioner, the object of interest is the maximum number

of shards for partitioning the data in stage one as a function of an error bound. As our error bound,

we define the maximum expected squared error ε2max = supβ

[
E
[
|p̈ (βi |{β})− ṗ (βi |{β})|2

]]
. We

show (Appendix: Theorems) that the maximum number of shards for given maximum expected

14



squared error ε2max, N , data Y , and the number of MCMC iterations (after burn-in) R is

Smax =

⌊
C0

2

(
NRε2max +

√
(NRε2max)2 − 4C−20

)⌋
(3.21)

≈
⌊
C0NRε

2
max

⌋
for S2 � 1 (3.22)

where C0 =
{

supβ

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]}−1
may be estimated empirically, and Iθ is the Fisher

information matrix at θ. As the amount of information that data Y carries about the θ increases,

as suggested by an increasing Iθ, the proposed algorithm is more robust to larger values of S.

3.4.3 Stage One Subsampling Algorithm A′
3

Noting that p̈ (βi |{β}) converges to ṗ (βi |{β}) (given a maximum expected squared error) for

sufficiently large Ns = N/S , say N∗s , there may be no practical benefit to using a value of Ns greater

than N∗s for constructing p̈ (βi |{β}). If N∗s < Ns, we may reduce computation and communication

costs with a modification to the first stage by sampling Y with probability p prior to dividing the

data into S shards, so that N∗s = pNs = pN/S. If N∗s << Ns we may expect substantial savings in

first stage computation and execution time. Sampling in the second stage is not possible since our

primary interest is in the β draws for all N cross-sectional units. The proposed algorithm with stage

one subsampling (for non-standard posterior distributions) is presented in the Appendix (Algorithm

A′3 ).

The maximum number of shards with subsampling rate p in the first stage (Appendix: Theorems)

is

Smax =

⌊
C0

2

(
NRε2maxp

2 +

√
(NRε2maxp

2)2 − 4p2C−20

)⌋
(3.23)

≈
⌊
C0NRε

2
maxp

2
⌋
for S2 � p2 (3.24)

Equivalently, the optimal stage one subsampling rate is

p ≈ min

{
1,

√
S

C0NRε2max

}
(3.25)
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3.4.4 Stage Two

For an embarrassingly parallel implementation of stage two of the proposed algorithm A3, the full

data Y is partitioned into S shards such that all of the data for unit i are in the same shard:

Ys = ∪i∈Is {yit}
T
t=1, s = 1, ..., S, Is is a vector indicating the units allocated to shard s. Since

p̈ (βi |{β}) converges to ṗ (βi |{β}), we replace ṗ (βi |{β}) in (3.14) with p̈ (βi |{β}) .

βi |yi ∼ p̈ (βi |{β})
∏
t

p (yit |βi ) for i ∈ Is (3.26)

We propose an independence Metropolis-Hastings algorithm in the second stage in which p̈ (βi |{β})

is used as the proposal distribution. More precisely, the proposal and target densities are p̈ (βi |{β})

and p̈ (βi |{β})
∏
t p (yit |βi ), respectively. Given draw βr−1i , the acceptance probability for draw βri

is

α = min

{
1,

p̈ (βri |{β})
∏
t p (yit |βri )

p̈
(
βr−1i |{β}

)∏
t p
(
yit
∣∣βr−1i

) p̈ (βr−1i |{β}
)

p̈ (βri |{β})

}
(3.27)

= min

{
1,

∏
t p (yit |βri )∏

t p
(
yit
∣∣βr−1i

)} (3.28)

a very fast computation.

For not large T , an independence Metropolis-Hastings algorithm is especially attractive: p̈ (βi |{β}),

as the prior, has a large influence on the unit-specific posterior densities since the unit likelihood∏
t p (yit |βi ) is relatively flat, and therefore obviates the need for a more computationally intensive

random walk algorithm. Under mild conditions, it has the additional advantage of uniform conver-

gence rather than a geometric or worse rate of convergence for a random walk algorithm (Robert

and Casella, 2010). However, for large T , each unit’s likelihood may be more sharply defined and

influenced less by the prior. Proposal draws from p̈ (βi |{β}) are therefore expected to have lower

acceptance rates with increasing T .
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3.4.5 p(βi |θ ) and p (yit |βi ) are Conjugate

As presented, Algorithm A3 assumes that p(βi |θ ) and p (yit |βi ) are not conjugate. If they are

conjugate, the βi draws in stage two may be sampled directly from a mixture whose components

are a standard distribution.

βi |yi ∼ p̈ (βi |{β})
∏
t

p (yit |βi ) for i ∈ Is (3.29)

∼ 1

SR

∑
s

∑
r

p(βi |θrs )
∏
t

p (yit |βi ) for i ∈ Is (3.30)

Drawing from (3.30) is straightforward: draw a multinomial distributed indicator vector with pa-

rameter vector
(

1
SR , ...,

1
SR

)
to determine the active component {s, r}, and then draw βi from the

standard distribution p(βi |θrs )
∏
t p (yit |βi ). Performance of this second stage implementation is

independent of the number of observations T per unit.

3.4.6 Common Parameters

The proposed algorithm (A3) simulates draws from the unit-level posterior densities for all N

cross-sectional units. If the researcher is interested in the common parameters, they may be easily

simulated using the unit-level draws. Given the rth draw of the unit-level parameters {βri }, the rth

draw of the common parameters θr may be sampled from

θr |{βri } , τ ∝ p(θr |τ )
∏
i

p (βri |θr ) (3.31)

where p(θ |τ ) is the prior density for θ. If p (βi |θ ) and p(θ |τ ) are conjugate, as is commonly the

case, the θ draws may be sampled directly from a standard distribution.

4 Simulation

We demonstrate the proposed algorithm using simulated data to estimate a hierarchical multinomial

logit model with four choice alternatives and four response parameters, β′i = (βi1, βi2, βi3, βi4). The
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first three response parameters are alternative-specific intercepts, and the fourth parameter is the

coefficient for an alternative-specific covariate (e.g. price). Each unit’s response parameter βi is

drawn from a normal distribution with mean µ′ = (1, 2, 3,−2) and covariance Σ equal to the identity

matrix.

We implement the simulation on a 32-core Linux computer with 256GB of memory, each core

representing a single machine. As our benchmark model, we draw from (3.5 - 3.6) with a hy-

brid Gibbs algorithm (A1), implemented by the bayesm routine rhierMnlMixture (Rossi, 2015).

bayesm is mostly written in R except for the computationally intensive loops which are written in

C++. For the proposed algorithm (A3), the first stage is an embarrassingly parallel hybrid Gibbs

algorithm (we appropriately modify rhierMnlMixture) to draw from (3.16 - 3.17) and to construct

p̈ (βi |{β}) (3.20). The second stage is an embarrassingly parallel independence Metropolis-Hastings

algorithm to draw from (3.26). The second stage is implemented in R and C++ (for the compu-

tationally intensive loops). Parallelism is implemented using the parallel (built-in to R) routine

mclapply. Due to the memory limitations of our computer, both algorithms return the posterior

draws for a random sample of 1,000 cross-sectional units.

4.1 Convergence

We first test our theoretical finding that p̈ (β |{β}) converges to and is an asymptotically unbi-

ased estimator of ṗ (β |{β}) for sufficiently large Ns. Figure 1 compares plots of the marginals

of ṗ (β |{β}) for several components of the β vector, ṗ (βk |{β}), marginals of the S shard-specific

estimators ṗ (βk |{β}s ), and the marginals of p̈ (β |{β}). We do this for two components of β: one of

the three intercepts β3, and the coefficient of the alternative-specific covariate β4. For our simulated

data and model, we find that p̈ (βk |{β}) ≈ ṗ (βk |{β}) for Ns & 3, 333. That is, for all practical

purposes convergence of our estimator to that of the single machine hybrid Gibbs algorithm is

achieved at N∗s ' 3, 333. We also note that p̈ (βk |{β}) converges to ṗ (βk |{β}) at a faster rate than

ṗ (βk |{β}s ) since most of the S shard marginal densities, ṗ (βk |{β}s ), have not yet converged for

Ns = 3, 333, and many have not converged for Ns = 33, 333. This finding is consistent with the

theoretically larger variance of ṗ (β |{β}s ) by a factor of S. Plots of p̈(βk|{β} )
ṗ(βk|{β} ) are consistent with
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these findings (Appendix figure 1).

We next evaluate the convergence of the unit-level posterior densities from the proposed algo-

rithm (A3) to those of the single machine hybrid Gibbs algorithm (A1). The Q-Q plots in figure

2 compare quantiles of the β draws from the single machine hybrid Gibbs algorithm with those

of the proposed algorithm for a random sample of five cross-sectional units, for T = 5, 15, and

45 observations per unit, when Ns = 3, 333 units per shard (N = 100, 000). For convenience in

interpretation we plot the 45-degree line. Qualitatively, we find excellent convergence of results

for T = 5, and some slight degradation for T = 15 and T = 45 (for example, see unit 1). The

reason for this slight degradation in convergence is due to the independence Metropolis-Hastings

algorithm in the second stage. As T increases, the unit-level posterior densities become narrower as

the unit likelihood is more sharply defined and influenced less by the prior, which in turn reduces

the acceptance rate of the independent proposal draws. With fewer accepted draws, the effective

sample size decreases and each unit-level empirical posterior density (for the construction of the Q-

Q plot) exhibits greater bias and therefore poorer convergence to the single machine hybrid Gibbs

algorithm. The effect of a low acceptance rate (as T increases) may be overcome by increasing the

number of MCMC iterations in stage two, or with a random walk Metropolis-Hastings algorithm

instead of an independence algorithm.

Since correlation is a measure of the linear relationship between two variables, it is suitable for

quantifying the linear relationship between the quantiles of the single machine hybrid Gibbs draws

(A1) and those of the proposed algorithm (A3). A correlation that is very close to one indicates an

exact linear relationship (i.e., a straight line) and excellent convergence of the algorithms. Table 1

presents the first, fifth and fiftieth (median) correlation percentiles of unit-specific draw quantiles for

a random sample of 1,000 cross-sectional units. For T = 5, the proposed algorithm exhibits superior

convergence to the single machine hybrid Gibbs algorithm: the median correlation of 0.999 suggests

an exact linear relationship, and the first percentile correlation of 0.99 suggest an almost exact linear

relationship. As T increases to 15, the proposed algorithm exhibits moderate convergence since the

median correlation remains at 0.999, the fifth percentile decreases to 0.99, but the first percentile

decreases to about 0.98. At T = 45, the proposed algorithm exhibits inferior convergence with a
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median correlation of about 0.997 and a first percentile correlation of about 0.91. These results are

consistent with the qualitative findings from the Q-Q plots.

Figure 3 and table 2 present convergence results for Ns = 33, 333 (N = 1, 000, 000). We note

the very close agreement between the correlations for Ns = 3, 333 (table 1) and Ns = 33, 333

(table 2). The reason why correlations do not increase further for Ns greater than 3, 333 is because

N∗s ' 3, 333: once convergence to the single machine hybrid Gibbs posterior predictive distribution

is achieved at Ns = N∗s , any further increase in Ns decreases the squared error between ṗ (β |{β})

and p̈ (β |{β}) negligibly. Although several units (e.g., units 3 and 5 for T = 45 ) in figure 3 seem

to converge rather poorly as compared to other units in figure 1, we surmise that this may be due

to the small sample of units (five) chosen for the figures. In particular, for T = 45 the number of

accepted proposal draws for units in the tails of the posterior predictive density may be small due

to the small number of proposal draws in the tail and a narrow likelihood function, resulting in

many consecutive identical draws (as seen for units 3 and 5 in figure 3).

4.2 Performance

To quantify the performance of the proposed algorithm (A3) relative to the single machine hybrid

Gibbs algorithm (A1), table 3 presents four metrics: execution time, effective sample size (ESS), ESS

per minute, and the ratio of ESS/minute of the proposed algorithm to the hybrid Gibbs sampler.

The effective sample size for correlated simulation draws is the size of an i.i.d. sample with the

same variance (or information) as the simulated draws (Robert and Casella, 2010). ESS per minute

is therefore a measure of the amount of information obtained from posterior draws per unit of

computing time. It quantifies the efficiency of an MCMC chain.

For small T (T = 5), the proposed algorithm dominates the single machine hybrid Gibbs algo-

rithm in two respects: (i) distributed processing decreases execution time by an order of magnitude,

and (ii) draws from the independence Metropolis-Hastings algorithm are less correlated resulting in

a ESS that is about three times larger. The resulting increase in efficiency (ESS per minute) over the

single machine hybrid Gibbs algorithm is by a factor of thirty-seven. For large N (N = 1, 000, 000),

the proposed algorithm takes two hours and the single machine hybrid Gibbs algorithm runs in 26
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hours.

For moderate T (T = 15), execution time of the proposed algorithm is still about an order of

magnitude faster but ESS is just slightly better than the single machine hybrid Gibbs algorithm.

The degradation in ESS (relative to that for small T ) is due to the narrowing of the likelihood

function, which in turn decreases the acceptance rate and ESS. The resulting efficiency gain is thus

about an order of magnitude greater, driven primarily by the distributed processing of the proposed

algorithm. For large N , the proposed algorithm takes three hours and the single machine hybrid

Gibbs algorithm needs 36 hours.

For large T (T = 45), although the proposed algorithm is an order of magnitude faster than the

single machine hybrid Gibbs algorithm, ESS is about forty percent of that for the single machine

hybrid Gibbs algorithm, due to a further decrease in the acceptance rate (table 4). Efficiency is

about 3-4 times higher than the single machine hybrid Gibbs algorithm. For large N , the proposed

algorithm takes 6.5 hours and the single machine hybrid Gibbs algorithm runs in 2.5 days.

Table 4 quantifies the effect of increasing T (and the narrowing of unit-level posterior densities)

on acceptance rates. The single machine hybrid Gibbs algorithm’s adoption of a random walk for

the Metropolis-Hastings draws results in slightly increasing acceptance rates with T , whereas the

use of an independence Metropolis-Hastings algorithm in the second stage of the proposed algorithm

results in significantly lower acceptance rates with T . This finding is due to the adaptability of the

random walk algorithm to the shape of each unit’s posterior whereas draws from the independence

algorithm are from a common fixed proposal distribution that is independent of any unit’s posterior

density. With increasing T , we expect that a random walk algorithm instead of an independence

algorithm for stage two of the proposed algorithm will result in an increase in acceptance rates

and convergence. Alternatively, a simpler but less computationally efficient modification may be to

increase the number of MCMC iterations in the second stage so that the number of accepted draws

is sufficiently large for convergence and inference purposes.
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4.3 Scalability with S

The scalability of the proposed algorithm (A3) with the number of shards S is established by the

relationship (3.21) between the maximum number of shards and the maximum expected squared

error between p̈ (β |{β}) and ṗ (β |{β}). For S2 � 1, Smax ≈
⌊
C0NRε

2
max

⌋
. The constant C0

characterizes the proposed algorithm’s scalability and is dependent on the data Y and model. We

estimate C0 for the simulation dataset (Appendix table 5) by running the hybrid Gibbs sampler

and stage one of the proposed algorithm with N = 10, 000, S = 3 shards, and R = 16, 000

(after burn-in), and approximate the resulting maximum squared error between ṗ (β |{β}) and

p̈ (β |{β}): C0 = 2.278× 10−4 . It takes about twenty minutes to run the simulations. To test the

robustness of our estimate, we use (3.21) to solve for the maximum expected squared error ε2max

when N = 1, 000, 000, S = Smax = 30, and R = 16, 000 (after burn-in), and compare it to the actual

maximum squared error. We impose the constraint that S = Smax = 30 because of a limitation of

our computing system. We find ε2max = 8.24× 10−6 and ε2actual = 1.04× 10−5, a difference of about

20%.

4.4 Scalability with N

To evaluate the scalability of the proposed algorithm (A3) for N up to 100 million units, we run

A3 on Comet, a large-scale cluster computing system with a parallel distributed file system at the

University of California San Diego Supercomputer Center (table 6). Comet’s compute nodes run

Linux and are equipped with 24 cores and 128GB of memory. To avoid the inefficiencies inherent

in the parallel (built-in to R) routine mclapply, we implement parallelization with Linux shell

scripts, Perl scripts, and C++ code, and optimize the I/O intensive parts of the R code. We keep

track of the total time to run each stage including communication overhead. For each run, T = 5

observations, R = 20, 000 MCMC iterations including 4,000 iterations for burn-in, and we keep

every 10th draw for each of the N units. We set the number of shards S so that Ns = 33, 333 or

larger.

For N = 1 million units and T = 5, the proposed algorithm runs about twice as fast on Comet

compared to the 32-core Linux computer: 61 minutes on Comet, compared to 117 (table 3) on the
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32-core Linux computer. Communication overhead is negligible. This doubling in performance on

Comet is due to the decrease in communication costs attributed to Comet’s parallel distributed file

system and the removal of the inefficiencies related to the mclapply routine and I/O intensive R

code on the 32-core computer. For N = 10 million, the proposed algorithm runs in 76 minutes,

a relatively small increase from 61 minutes for a ten-fold increase in N . Communication overhead

increases to 2 minutes due to the ten-fold increase in the number of file transfers between worker

machines and the master computer.

For N = 100 million, we need 3,000 shards to maintain Ns = 33, 333. Due to a limitation on

Comet we are constrained to only 1,728 shards, causing execution times to increase to 162 minutes,

still a relatively modest amount of time. Communication overhead increases to 21 minutes due to

the even larger number of file transfers. We conclude that the proposed algorithm scales very well

to N = 100 million units.

4.5 Subsampling in Stage One

Since p̈ (β |{β}) converges to ṗ (β |{β}) at Ns ' 3, 333 (see figure 1), we evaluate the impact

of subsampling Y at rate p = 10% prior to dividing the data into S shards for the first stage

(algorithm A′3). That is, for N = 1 million units and S = 30 shards, Ns = pN/S = 3, 333

rather than Ns = N/S = 33, 333. We find no difference in convergence between Ns = 3, 333 and

Ns = 33, 333 in the first stage (see figure 2 and table 1 in the Appendix, as compared to figure 3

and table 2).

Subsampling in the first stage improves the performance of the proposed algorithm. For small T

(T = 5), execution time is reduced from 117 minutes to 27 minutes, resulting in a further increase in

efficiency to over two orders of magnitude greater than the single machine hybrid Gibbs algorithm

(Appendix table 2). For moderate T (T = 15), a further reduction in execution time to 1 hour (from

3 hours) boosts efficiency to about thirty-five times greater than the single machine hybrid Gibbs

algorithm. For large T (T = 45), efficiency increases to about seven times higher than the single

machine hybrid Gibbs algorithm due to a decrease in execution time from 6.5 hours to 3 hours.

Stage two acceptance rates are similar with and without subsampling (table 4 and Appendix table
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3).

The scalability of the proposed algorithm for N up to 100 million units also increases with stage

one subsampling (Appendix table 4). For N = 1 million units and T = 5, subsampling reduces

execution time from 61 minutes to 13 (communication overhead remains negligible). For N = 10

million, execution time decreases from 76 minutes to 19 with subsampling (communication overhead

is relatively constant at 3 minutes). For N = 100 million, execution time decreases from 162 minutes

to 78 (communication overhead is relatively constant at 19 minutes).

5 Application: Donor Response

We further illustrate the proposed algorithm (A3) by modeling donor response to solicitation using

data from a nonprofit charitable organization. In charitable fund-raising, the question of who

and how often should be solicited is critical to the success of the organization. Any data-based

solicitation strategy will require a model of donor response with individual level parameters. As the

number of actual and/or potential donors can be very large, the need for more efficient methods is

clear in this context.

The data from a leading US nonprofit organization (Malthouse, 2009) contains the donation

and solicitation histories for 1,097,671 donors, 3,020,479 donations, and 28,417,598 solicitations for

donations over a fifteen-year period (1992-2006). Data for each donor is collected beginning from

the date of her first donation, resulting in an approximately linear increase in the total number of

donors over time. After removing histories with incomplete data, we have 1,088,269 cross-sectional

units. Donors are heterogenous with each making an average of 2.8 donations (standard deviation

is 4.3) with a mean interdonation time of 362 days (standard deviation is 262 days). The 25th, 50th,

and 75th percentiles of the number of donations per donor after their initial donation are 0, 0, and

2, respectively. That is, the majority of donors only donate once, or at most several times, before

“lapsing” (Feng, 2014). Only about seven percent of all solicitations (after the first donation) result

in donations. The 25th, 50th, and 75th percentiles of the number of solicitations per donor are 12,

21, and 31, respectively.
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The dependent variable represents whether or not a donor responds to a solicitation, given that

she has donated at least once. As covariates we use an intercept, the number of days since her last

donation (recency), and the number of past donations (frequency). We do not find that the average

of past donation amounts influences donor response. We log transform the data and estimate a

hierarchical binomial logit model (with a normal prior) of solicitation response with our proposed

algorithm and the single machine hybrid Gibbs algorithm.

For the results of the first stage, figure 4 compares plots of ṗ (βk |{β}) constructed by the

single machine hybrid Gibbs algorithm (A1), the S shard-specific marginals ṗ (βk |{β}s ) from the

proposed algorithm (A3), and the marginals p̈ (βk |{β}) of the proposed algorithm for S = 30

shards (Ns ≈ 36, 000). We find excellent convergence of the marginal posterior predictive densities.

Although plots of p̈(βk|{β} )
ṗ(βk|{β}s )

(Appendix figure 3) show that β1 (intercept) and β3 (frequency) do

not converge as well as β2 (recency), especially in the tails, second stage convergence is excellent.

Presumably, this is because there are a sufficiently large number of observations per unit (median

of 21 observations per unit) in the likelihood to influence the posterior far enough away from the

posterior predictive density. Figure 5 shows the second stage convergence of the unit-level posterior

densities from the proposed algorithm to those of the single machine hybrid Gibbs algorithm for a

random sample of twenty-four units. Table 7 presents the first, fifth and fiftieth (median) correlation

percentiles of unit-specific draw quantiles for a random sample of 1,000 cross-sectional units. We

find excellent qualitative and quantitative unit-level posterior convergence.

The single machine hybrid Gibbs algorithm (A1) requires about 3 days and 5 hours to run

compared to about 6 hours for the proposed algorithm (A3). Acceptance rates are 23% and 54%

for the single machine hybrid Gibbs and the proposed algorithms, respectively. Effective sample

sizes (ESS) are 3,178 and 15,389, respectively (out of 40,000 MCMC iterations including 5,000 for

burn-in), and ESS per minute are 0.69 and 40.15, respectively. The proposed algorithm is more

efficient than the single machine hybrid Gibbs algorithm by about a factor of 58 for this application,

significantly better than the 13-fold efficiency gain with simulated data for T = 15 (table 3). The

supposed reason for this apparent paradox may be due to the simulated dataset’s high variability

compared to the more realistic variability of the donation dataset. The donation dataset’s smaller
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Fisher information about βi (due to its lower variability) induces a flatter likelihood function for βi,

even though there are a median of 21 observations per unit for the donation dataset and only 15

for the simulation dataset. Higher acceptance rates (54% versus 17%), values of ESS (15,389 versus

1,309), and efficiency gains (58 versus 13) are a consequence. In practice, the simulation dataset’s

high Fisher information about βi may not be representative of real datasets, which suggests that

the efficiency gains of the proposed algorithm are expected to be markedly higher than those cited

using the simulation dataset in this article.

C0 is estimated for the donation dataset (Appendix table 5) with N = 10, 000 and S = 3

shards: C0 = 7.980 × 10−7 (it takes about 1 hour to run the simulations). For the complete

dataset (N = 1, 088, 269) and S = Smax = 30, the maximum expected squared error and the actual

maximum squared errors are ε2max = 9.88×10−4 and ε2actual = 8.97×10−4, a difference of about ten

percent. When we compare estimates of C0 for the simulation (C0 = 2.278 × 10−4) and donation

(C0 = 7.980 × 10−7) datasets, inverse measures of their respective Fisher information about θ, we

find that the simulation data carries about three orders of magnitude more information about the

common parameters θ than does the donation data. The simulation dataset is thus more scalable

with S than the donation dataset (3.21).

We conclude that low Fisher information (about θ and βi) datasets are more efficient in terms

of ESS per unit of computing, but less scalable in terms of S. We therefore expect that for low

Fisher information datasets, scalability is more likely to be limited by Smax. For high Fisher

information datasets, scalability is more likely to be limited by the number of available computers.

In the latter case, execution time may be improved by subsampling in the first stage (algorithm

A′3) to accommodate the limited number of available computers, while keeping within a given error

tolerance (3.24).

5.1 Subsampling Units

Although the focus of this article is to propose a scalable algorithm for estimating all of the unit-level

parameters in Bayesian hierarchical models, it is interesting to examine the effect of a subsampling2

2Subsampling in this context refers to subsampling the cross-sectional units for purposes of estimating the common
parameters, whereas in the context of the proposed algorithm it is for purposes of constructing an estimator of the
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proposal. Some might suggest that if we sample the units, we can obtain satisfactory estimates

of the common parameters (that is, the random coefficient distribution of individual parameters)

at much lower computational cost. These subsample based estimates might be used to estimate

a population-wide response to a donor solicitation or a market share in the case of multinomial

logits applied to product demand. Here we explain that some caution must be exercised in the

subsampling approach in the sense that the resulting inferences from the subsample of units can be

very different from the inference based on the entire universe of units. Even large subsamples can

provide misleading inferences.

We consider a subsample with a moderate value of N (N = 10, 000) which can easily run on a

single processor MCMC implementation. We compare inferences about the common parameters for

this subsample with the full sample of bigN (N ≈ 1, 100, 000). In our hierarchical binary logit model

of donor response, we assume that the population of units has a multivariate normal distribution

of individual logit coefficients, βi ∼ N (µ,Σ). In the notation of the paper, the common parameter

θ consists of a vector µ and the unique elements of Σ. We plot marginal posterior densities of the

common parameter draws for the normal prior specified in our model for moderate (N = 10, 000)

and big N (N = 1, 088, 269), a difference by factor of about 100. The marginals of each element

of µ are in figure 6, those for the diagonal elements of Σ in figure 7, and those for the off-diagonal

elements of Σ in figure 8. Tables 8 and 9 provide corresponding summary and test statistics. We note

that the standard deviations for all elements of {µ,Σ} decrease by a factor of about 10, as expected

when increasing the sample size by a factor of 100. More interestingly, there is a clear separation

of the posterior means for µ and Σ between moderate and big N (multivariate tests for equality of

means are significant). This suggests that a big N approach to parameter estimation has the added

benefit of different (and presumably more accurate) parameter estimates and characterization of

heterogeneity, and that the proposal to subsample units may provide misleading inferences.

To illustrate the managerial relevance of different parameter estimates with increasing subsample

size, we consider a prediction task. Using the same donation dataset we estimate a hierarchical

binomial logit model of solicitation response to predict the probability of response for 1,000 donors

posterior predictive density of β.
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in a holdout period. We find that a model with an intercept term and three covariates performs

well for prediction: time since last donation, number of donations in the current year, and total

donation amount in the current year. We estimate the model with an increasing number of donors,

from 1,000 to 1 million donors (data in the holdout period is not used for estimation). Figure 9 plots

the mean prediction error and prediction accuracy as a function of the number of donors for model

estimation. Mean prediction error is the mean absolute deviation between the predicted probability

of response and the observed probability of response (0 or 1). Prediction accuracy is the proportion

of correct predictions, wherein a prediction probability greater than fifty-percent is interpreted as

a positive predicted response. Mean prediction error decreases from 27% when estimating a model

with 1,000 donors, to 18% with 1 million donors. Prediction accuracy increases from 75% to 87%.

A 12% increase in efficiency can be substantial when managing a very large donor pool.

6 Conclusions

We propose a distributed MCMC algorithm for estimating Bayesian hierarchical models when the

number of units is very large (big N) and the objects of interest are both the unit-level and common

parameters. As compared to other distributed approaches, the method is asymptotically exact,

retains the flexibility of any standard MCMC algorithm to accommodate any prior, has a computa-

tional complexity that is independent of the number of shards, does not impose any distributional

assumptions on posteriors, has leaner communication requirements, and is easy to implement using

existing MCMC packages.

For small T , the proposed algorithm dominates the performance of the single machine hybrid

Gibbs algorithm in two respects. It is more computationally efficient by distributing its processing,

and it is more algorithmically efficient by simulating draws that are less correlated. This double-win

results in an overall efficiency gain of several orders of magnitude over the single machine hybrid

Gibbs algorithm. To boost performance further, a modification to the proposed algorithm introduces

subsampling in the first stage. Using simulated data with N = 1, 000, 000 and T = 5, the single

machine hybrid Gibbs algorithm takes 26 hours to run, the proposed algorithm requires 2 hours,
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and the proposed algorithm with stage one subsampling completes processing in 30 minutes. For

larger T , the algorithm still dominates the standard single machine hybrid Gibbs algorithm in the

sense of delivering about an order of magnitude greater effective sample size per unit of computing

even though the mixing properties are not as favorable. In real applications efficiency gains are

expected to be markedly higher.

The proposed algorithm may be implemented on a multicore computer or a cluster of computers.

We have demonstrated its scalability with simulated and real panels of one million units on a

multicore computer, a pedestrian environment. Scalability is even greater on a large-scale cluster

computing system. In our example with 100,000,000 units, only a few hours of computation time is

required to simulate unit-level parameter posteriors.
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Algorithm A3 Stage one of the proposed algorithm (for non-standard posteriors)
Stage One: Draw from β ∼ p̈ (β |{β})

Input: Y = ∪i {yit}Tt=1

Output: {βr}Rr=1

1. Divide Y into S independent shards

(a) Is = {i : zi = s}, s = 1, ..., S, where p (zi = s) = 1
S , and |Is| =

N
S

(b) Ys = ∪i∈Is {yit}
T
t=1, s = 1, ..., S

2. Run S parallel MCMC simulations (s = 1, ..., S)

(a) Set θ0s , β0i for all i ∈ Is
(b) for r = 1 to R

i. Draw βri
∣∣θr−1s , Ys ∝ p

(
βri
∣∣θr−1s

)∏
t p (yit |βri ) for all i ∈ Is (Metropolis-Hastings

draw)

ii. Draw θrs

∣∣∣{βri }i∈Is ∼ p(θrs |τ )
∏
i∈Is p (βri |θrs ) (conjugate prior)

(c) for r = 1 to R/S
i. Draw zr ∼Multinomial

(
n = 1, p =

{
1
R , ...,

1
R

})
, zr ∈ {1, ..., R}

ii. Draw βrs
∣∣θzrs ∼ p(β ∣∣θzrs )

3. Collect the β draws and shuffle

(a) β = ∪Ss=1 {βrs}
r=R/S
r=1

(b) β = permute (β)
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Algorithm A3 (cont’d) Stage two of the proposed algorithm (for non-standard posteriors)
Stage Two: Draw βi for i = 1, ..., N

Input: Y , {βr}Rr=1

Output:
{
{βri }

R
r=1

}N
i=1

1. Divide Y into S independent shards

(a) Is = {i : zi = s}, s = 1, ..., S, where p (zi = s) = 1
S , and |Is| =

N
S

(b) Ys = ∪i∈Is {yit}
T
t=1, s = 1, ..., S

2. Run S parallel independence Metropolis-Hastings simulations (s = 1, ..., S).

(a) β1i = β1, i ∈ Is
(b) for r = 2 to R

i. αri = min

{ ∏
t p(yit|βr )∏

t p(yit|βr−1
i )

, 1

}
, i ∈ Is

ii. βri =

{
βr wp αri
βr−1i wp 1− αri

, i ∈ Is
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Figure 1: Convergence of marginals of posterior predictive density estimators
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T = 5 observations per unit, S = 30 shards, and R = 10, 000 MCMC iterations including 2,000
iterations for burn-in (ṗ (β |{β}s ) in grey, p̈ (β |{β}) in red, ṗ (β |{β}) in blue)
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Figure 2: Convergence of unit-level posteriors: Q-Q plots (Ns = 3, 333)

Q-Q plots of unit-specific draws from the proposed algorithm and the single machine hybrid Gibbs
algorithm, for a random sample of five units and T = 5, 15, and 45 observations per unit. Ns = 3, 333
units per shard, N = 100, 000 units, S = 30 shards, and R = 20, 000 MCMC iterations including
4,000 iterations for burn-in
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Figure 3: Convergence of unit-level posteriors: Q-Q plots (Ns = 33, 333)

Q-Q plots of unit-specific draws from the proposed algorithm and the single machine hybrid Gibbs
algorithm, for a random sample of five units and T = 5, 15, and 45 observations per unit. Ns =
33, 333 units per shard, N = 1, 000, 000 units, S = 30 shards, and R = 20, 000 MCMC iterations
including 4,000 iterations for burn-in
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Figure 4: Donor response: Convergence of marginals of posterior predictive density estimators
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Figure 5: Donor response: QQ plots showing convergence of unit-level posteriors

Q-Q plots of unit-specific draws from the proposed algorithm and the single machine hybrid Gibbs
algorithm, for a random sample of twenty-four units. Ns ≈ 36, 000 units per shard, N = 1, 088, 269
units, S = 30 shards, and R = 40, 000 MCMC iterations including 5,000 iterations for burn-in
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Figure 6: Donor response: Marginal posterior densities of µ (for moderate and big N)
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Figure 7: Donor response: Marginal posterior densities of diagonal elements of Σ (for moderate and
big N)
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Figure 8: Donor response: Marginal posterior densities of off-diagonal elements of Σ (moderate and
big N)
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Figure 9: Donor response: Predicted response probability
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Mean prediction error is the mean absolute deviation between the predicted probability of response
and the observed probability of response (0 or 1). Prediction accuracy is the proportion of correct
predictions, wherein a prediction probability greater than fifty-percent is interpreted as a positive
predicted response.
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Table 1: Convergence of unit-level posterior densities: Q-Q Correlations (Ns = 3, 333)

T
β1 β2 β3 β4

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

5 0.994 0.998 0.999 0.991 0.997 0.999 0.994 0.998 0.999 0.992 0.998 0.999
15 0.982 0.993 0.999 0.977 0.993 0.999 0.976 0.993 0.999 0.978 0.994 0.999
45 0.912 0.976 0.997 0.926 0.974 0.997 0.909 0.976 0.997 0.936 0.979 0.998

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs algo-
rithm and the proposed algorithm, for a random sample of 1,000 units. N = 100, 000 units, S = 30
shards, and R = 20, 000 MCMC iterations including 4,000 iterations for burn-in
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Table 2: Convergence of unit-level posterior densities: Q-Q correlations (Ns = 33, 333 units per
shard)

T
β1 β2 β3 β4

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

5 0.993 0.998 0.999 0.995 0.997 0.999 0.995 0.998 0.999 0.994 0.998 0.999
15 0.980 0.994 0.999 0.978 0.993 0.999 0.979 0.993 0.999 0.982 0.995 0.999
45 0.916 0.973 0.997 0.919 0.974 0.997 0.918 0.970 0.997 0.900 0.973 0.997

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs algo-
rithm and the proposed algorithm, for a random sample of 1,000 units. Ns = 33, 333 units per
shard, N = 1, 000, 000 units, S = 30 shards, and R = 20, 000 MCMC iterations including 4,000
iterations for burn-in
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Table 3: Performance of the proposed algorithm

T Algorithm
Ns = 3, 333 N = 100, 000 Ns = 33, 333 N = 1, 000, 000

Time ESS ESS/min ESSProposed/min
ESSGibbs/min Time ESS ESS/min ESSProposed/min

ESSGibbs/min

5
Gibbs 158 1,141 7.2

38.0
1,553 1,145 0.7

37.6
Proposed 12 3,301 273.7 117 3,254 27.7

15
Gibbs 203 1,170 5.8

12.4
2,140 1,172 0.5

13.2
Proposed 19 1,362 72.2 182 1,309 7.2

45
Gibbs 388 1,212 3.1

4.0
3,649 1,209 0.3

3.3
Proposed 36 444 12.4 384 426 1.1

Performance metrics are for a random sample of 1,000 units. Ratios relative to the single machine
hybrid Gibbs algorithm are in parentheses. For the subsampling algorithm, Ns = 3, 333 units per
shard in the first stage (first stage sampling rate p = 10%), Ns = 33, 333 units per shard in the
second stage. S = 30 shards, and R = 20, 000 MCMC iterations including 4,000 iterations for
burn-in
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Table 4: Acceptance rates for proposed algorithm

T Hybrid Gibbs (percent) Proposed algorithm (percent)
5 20.2 36.4
15 21.5 16.5
45 22.9 5.0

Performance metrics are for a random sample of 1,000 units. Ns = 33, 333 units per shard,
N = 1, 000, 000 units, S = 30 shards, R = 20, 000 MCMC iterations including a burn-in of 4, 000
iterations.
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Table 5: Scalability with S: Estimation of C0

Dataset
C0 Estimation1 with Small N Squared Error2 with Big N

Actual Maximum
C0

Maximum Expected Actual Maximum
Squared Error ε2 Squared Error ε2max Squared Error ε2actual

Simulation 9.143× 10−5 2.278× 10−4 8.24× 10−6 1.04× 10−5

Donation 1.193× 10−2 7.980× 10−7 9.88× 10−4 8.98× 10−4

1. To estimate C0 for the simulation dataset, we first construct ṗ (β |{β}) and p̈ (β |{β}) for
N = 10, 000 units, S = 3 shards, R = 16, 000 MCMC iterations after burn-in (4, 000). We
approximate the maximum expected squared error as the actual maximum squared error ε2 =

supβk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]
and approximate C0 ≈

(
S2+1
SNRε2

)
. For the donation

dataset we use N = 10, 000 units, S = 3 shards, R = 35, 000 MCMC iterations after burn-in
(5, 000) to estimate ε2 and calculate C0.

2. We solve for the maximum expected squared error ε2max for Smax = 30 because we are limited
to a maximum of 30 cores in our computing environment: ε2max ≈

(
S2
max+1

SmaxNR

)
C−10 . For the

simulation dataset N = 1, 000, 000 units, S = 30 shards, R = 16, 000 MCMC iterations after
burn-in (4, 000). For the donation dataset N = 1, 088, 269 units, S = 30 shards, R = 35, 000
MCMC iterations after burn-in (5, 000). The actual maximum squared error is estimated by
constructing p̈ (β |{β}) and using ε2actual = supβk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]
.
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Table 6: Scalability with N

Units Shards Units per Shard Total Execution Time in minutes
N S Ns = N

S (I/O time)1

1 million 30 33,333 61 (0)
10 million 300 33,333 76 (2)
100 million 1,7282 57,870 162 (21)

Scalability testing is implemented on Comet, a large-scale cluster computing system at the Uni-
versity of California San Diego Supercomputer Center that uses a Lustre parallel distributed file
system. T = 5 observations, R = 20, 000 MCMC iterations including 4,000 iterations for burn-in,
keeping every 10th draw.

1. I/O time is the amount of time in minutes that is used for transferring data to and from each
node for each stage. It is included in the total execution time.

2. Comet limits the number of cores that a single application may use at one time to 1,728
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Table 7: Donor response: Convergence of unit-level posterior densities, Q-Q correlations

β1 β2 β3

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

0.996 0.999 1.000 0.995 0.999 1.000 0.995 0.999 1.000

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs algo-
rithm and the proposed algorithm, for a random sample of 1,000 units. N = 1, 088, 269 units,
S = 30 shards, and R = 40, 000 MCMC iterations including 5,000 iterations for burn-in
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Table 8: Donor response: Comparing posterior means of µ draws (moderate and big N)

sample statistic N = 10, 000 N ≈ 1, 100, 000 test statistic p-value

mean



−2.550

−0.0859

−0.7011





−2.535

−0.0920

−0.649


43.92 4.866× 10−16

std. dev.



0.0959

0.0153

0.0578





0.0118

0.0017

0.0067



R = 40, 000 MCMC iterations including 5,000 iterations for burn-in. To remove any correlation
between consecutive draws, every 500th draw is kept for Krishnamoorthy and Yu’s (2004) modified
Nel and van der Merwe multivariate test for the equality of means.

48



Table 9: Donor response: Comparing posterior means of Σ draws (moderate and big N)

sample statistic N = 10, 000 N ≈ 1, 100, 000 test statistic p-value

mean



4.323 −0.6036 −0.1767

−0.6036 0.1716 −0.0479

−0.1767 −0.0479 0.2934





4.069 −0.5636 −0.2087

−0.5636 0.1709 −0.0744

−0.2087 −0.0744 0.3694


136.8 1.346× 10−35

std. dev.



0.2244 0.0337 0.0722

0.0337 0.0087 0.0114

0.0722 0.0114 0.0363





0.0320 0.0047 0.0108

0.0047 0.0010 0.0015

0.0108 0.0015 0.0050



R = 40, 000 MCMC iterations including 5,000 iterations for burn-in. To remove any correlation
between consecutive draws, every 500th draw is kept for Krishnamoorthy and Yu’s (2004) modified
Nel and van der Merwe multivariate test for the equality of means.
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8 Appendix: Theorems

In the following proofs, ṗ (β |{β}), ṗ (β |{β}s ) and p̈ (β |{β}) are estimators of posterior predictive

densities constructed from convergent MCMC chains. Y = {Ys}Ss=1 is the full data, Ys is the data

in shard s, N is the number of units of data in Y , Ns = N
S is the number of units of data in Ys,

and S is the number of shards (greater than 1). We omit the unit-dependent subscript of β for

notational simplicity, unless it is required for clarity.

Theorem. Posterior Predictive Density

Claim. Eθ [p (β |θ )] is the posterior predictive density of β

Proof. The posterior predictive density of β is the density of β for a unit whose data y has not yet

been observed, given {βj} (Gelman et al., 2014). We denote {βj} as {β}.

p (β |{β}) =

∫
p (β, θ |{β}) dθ (8.1)

=

∫
p (β |{β} , θ ) p (θ |{β}) dθ (8.2)

=

∫
p (β |θ ) p (θ |Y ) dθ (8.3)

= Eθ [p (β |θ )] (8.4)

From (8.2) to (8.3), (i) p (β |{β} , θ ) = p (β |θ ) follows from the assumed conditional independence

of β and {β} given θ, and (ii) p (θ |{β}) = p (θ |Y ) follows from the fact that {β} contains all of

the information about θ that is in Y . The latter may also be seen from the directed acyclic graph

of the model (3.1 - 3.3): y → β → θ .

Theorem. Unbiased Estimator of the Posterior Predictive Density

Claim. ṗ (β |{β}) is an unbiased estimator of Eθ [p (β |θ )]
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Proof. We show that E [ṗ (β |{β})] = Eθ [p (β |θ )]

E [ṗ (β |{β})] = E

[
1

R

∑
r

p(β |θr )

]
=

1

R

∑
r

Eθr [p(β |θr )]

=
1

R

∑
r

Eθ [p(β |θ )]

= Eθ [p(β |θ )]

Theorem. ṗ (β |Y ) and p (β |Y ) share a Common Marginal Distribution

Claim. ṗ (β |Y ) = E{θr} [ṗ (β |{θr} , Y )] = p (β |Y )

Proof. The proof is similar to that by Beaumont (2003). We first show that ṗ (β |{θr} , Y ) is an

unbiased estimator of p (β |Y )

E{θr} [ṗ (β |{θr} , Y )] =

∫
ṗ (β |{θr} , Y ) p ({θr} |Y ) d {θr}

=

∫
· · ·
∫

1

R

R∑
r=1

p(β |θr )
∏
t

p (yt |β )
R∏
j=1

p
(
θj |Y

)
dθ1 . . . dθR

=

∫
· · ·
∫

1

R

R∑
r=1

p(β |θr )
R∏
j=1

p
(
θj |Y

)
dθ1 . . . dθR

∏
t

p (yt |β )

=
1

R

R∑
r=1

∫
p(β |θr )π (θr) dθr

∏
j 6=r

∫
p
(
θj |Y

)
dθj

∏
t

p (yt |β )

=
1

R

R∑
r=1

Eθ [p (β |θ )]
∏
t

p (yt |β )

∝ 1

R

R∑
r=1

p (β |Y )

= p (β |Y )

where
∫
p
(
θj |Y

)
dθj = 1.
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We derive the posterior marginal distribution ṗ (β |Y ) by integrating out {θr} from the joint

distribution induced by ṗ (β |{θr} , Y )

ṗ (β |Y ) =

∫
ṗ (β |{θr} , Y ) p ({θr} |Y ) d {θr}

= E{θr} [ṗ (β |{θr} , Y )]

= p (β |Y )

Theorem. Limit Distributions

Claim. The limit distributions of ṗ (β |{β}s ) and p̈ (β |{β}), for β ∈ Rd, are:

1.
√
NR
S (ṗ (β |{β}s )− ṗ (β |{β}))→P N

(
0,∇p (β |θ )T I−1θ ∇p (β |θ )

)
for S2 � 1

2.
√

NR
S (p̈ (β |{β})− ṗ (β |{β}))→P N

(
0,∇p (β |θ )T I−1θ ∇p (β |θ )

)
for S2 � 1

Proof. 1. limit distribution of
√
NR
S (ṗ (β |{β}s )− ṗ (β |{β}))

1.1. limit distribution of
√
N (ṗ (β |{β})− p (β |θ )) , for β ∈ Rd

For purposes of deriving limit distributions, we take a frequentist view in that data Y is a

random sample from a distribution for some fixed, nonrandom, unknown parameter. We assume

that N is large enough that standard asymptotics apply, and that the Bernstein-von Mises theorem

yields a good approximation to the posterior (Le Cam and Yang, 2000; van der Vaart, 1998). In

particular, we assume that posterior distributions approach a normal distribution centered at the

true parameter value with covariance equal to the inverse of the Fisher information matrix divided

by N .

Let θrN denote the rth draw from the posterior distribution of θ using algorithm A1 with data

Y for N units. Therefore
√
N (θrN − θ)→d N

(
0, I−1θ

)
where Iθ is the Fisher information matrix at

θ for N units of data Y . Since θ is a unknown constant,
√
N (θrN − θ) →P N

(
0, I−1θ

)
by van der

Vaart (1998) Theorem 2.7. For notational simplicity, we dispense with the N subscript for θr.
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We derive the distribution of
√
N (ṗ (β |{β})− p (β |θ )) by applying the multivariate delta

method to
√
N (θr − θ) →P N

(
0, I−1θ

)
and using the transformation ṗ (β |{β}) = 1

R

∑
r p (β |θr ).

β ∈ Rd where d is the dimension of β.

√
N (θr − θ) →P N

(
0, I−1θ

)
√
N (p (β |θr )− p (β |θ )) →P N

(
0,∇p (β |θ )T I−1θ ∇p (β |θ )

)
multivariate delta method

√
N

(∑
r

p (β |θr )−
∑
r

p (β |θ )

)
→P N

(
0,∇p (β |θ )T RI−1θ ∇p (β |θ )

)
sum of R random variables

√
N

(
1

R

∑
r

p (β |θr )− p (β |θ )

)
→P N

(
0,∇p (β |θ )T (RIθ)

−1∇p (β |θ )
)

divide by R

√
N (ṗ (β |{β})− p (β |θ )) →P N

(
0,∇p (β |θ )T (RIθ)

−1∇p (β |θ )
)

1.2. limit distribution of
√
Ns (ṗ (β |{β}s )− p (β |θ )) for S > 1, β ∈ Rd

Similarly, for each shard of Ns = N
S units of data Ys,

√
Ns (θr − θ) →P N

(
0, SI−1θ

)
, where Iθ

S

is the Fisher information matrix at θ for N
S units of data. We assume that N/S is large enough so

that the Bernstein-von Mises theorem applies. Therefore, following the reasoning in 1.1 above,

√
Ns (ṗ (β |{β}s )− p (β |θ ))→P N

(
0,∇p (β |θ )T S (RIθ)

−1∇p (β |θ )
)

1.3. limit distribution of
√
N (ṗ (β |{β}s )− p (β |θ )) for S > 1, β ∈ Rd

Solve for
√
N (ṗ (β |{β}s )− p (β |θ )) by multiplying

√
Ns (ṗ (β |{β}s )− p (β |θ )) by

√
S

√
Ns (ṗ (β |{β}s )− p (β |θ )) →P N

(
0,∇p (β |θ )T S (RIθ)

−1∇p (β |θ )
)

√
N (ṗ (β |{β}s )− p (β |θ )) →P N

(
0,∇p (β |θ )T S2 (RIθ)

−1∇p (β |θ )
)

multiply by
√
S

1.4. limit distribution of
√
NR
S (ṗ (β |{β}s )− ṗ (β |{β})) for S > 1, β ∈ Rd

First derive the limit distribution of
√
N (ṗ (β |{β}s )− ṗ (β |{β})) by subtracting

√
N (ṗ (β |{β})− p (β |θ ))
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from
√
N (ṗ (β |{β}s )− p (β |θ ))

√
N (ṗ (β |{β}s )− p (β |θ ))−

√
N (ṗ (β |{β})− p (β |θ )) →P N

(
0,∇p (β |θ )T

[
S2 (RIθ)

−1 + (RIθ)
−1
]

× ∇p (β |θ ))

√
N (ṗ (β |{β}s )− ṗ (β |{β})) → N

(
0,∇p (β |θ )T

(
S2 + 1

R

)
I−1θ ∇p (β |θ )

)

Therefore,

√
NR

S
(ṗ (β |{β}s )− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T

(
S2 + 1

S2

)
I−1θ ∇p (β |θ )

)
multiply by

√
R

S
√
NR

S
(ṗ (β |{β}s )− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T I−1θ ∇p (β |θ )

)
S2 � 1

2. limit distribution of
√

NR
S (p̈ (β |{β})− ṗ (β |{β})), for β ∈ Rd

First solve for
√
N (p̈ (β |{β})− ṗ (β |{β})) by using the transformation p̂ (β |Y ) = 1

S

∑
s p (ṗ (β |{β}s ))

√
N (ṗ (β |{β}s )− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T

(
S2 + 1

R

)
I−1θ ∇p (β |θ )

)
from 1.4 above

√
N

(
1

S

∑
s

(ṗ (β |{β}s )− ṗ (β |{β}))

)
→P N

(
0,∇p (β |θ )T

(
S2 + 1

SR

)
I−1θ ∇p (β |θ )

)
mean of S rand. vars.

√
N (p̈ (β |{β})− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T

(
S2 + 1

SR

)
I−1θ ∇p (β |θ )

)

Therefore

√
NR

S
(p̈ (β |{β})− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T

(
S2 + 1

S2

)
I−1θ ∇p (β |θ )

)
multiply by

√
R

S√
NR

S
(p̈ (β |{β})− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T I−1θ ∇p (β |θ )

)
S2 � 1

Theorem. Expected Squared Error

Claim. The expected squared errors between ṗ (β |{β}s ) and ṗ (β |{β}), and between p̈ (β |{β}) and
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ṗ (β |{β}), for β ∈ Rd, are:

1. E
[
|ṗ (β |{β}s )− ṗ (β |{β})|2

]
≈
(
S2

NR

)
∇p (β |θ )T I−1θ ∇p (β |θ ) for S2 � 1

2. E
[
|p̈ (β |{β})− ṗ (β |{β})|2

]
≈
(
S
NR

)
∇p (β |θ )T I−1θ ∇p (β |θ ) for S2 � 1

Proof. Since
√
N (ṗ (β |{β}s )− ṗ (β |{β}))→P N

(
0,∇p (β |θ )T

(
S2+1
R

)
I−1θ ∇p (β |θ )

)
, assume that

for large finite N

ṗ (β |{β}s )− ṗ (β |{β}) ∼ N
(
Bs
N
,∇p (β |θ )T

(
S2 + 1

NR

)
I−1θ ∇p (β |θ )

)

where Bs is some non-zero bias. Therefore ṗ (β |{β}s ) − ṗ (β |{β}) is normally distributed with

mean Bs
N and variance ∇p (β |θ )T

(
S2+1
NR

)
I−1θ ∇p (β |θ ) for β ∈ Rd , and

E
[
|ṗ (β |{β}s )− ṗ (β |{β})|2

]
= V ar (ṗ (β |{β}s )− ṗ (β |{β})) + E [ṗ (β |{β}s )− ṗ (β |{β})]2

= ∇p (β |θ )T
(
S2 + 1

NR

)
I−1θ ∇p (β |θ ) +

(
Bs
N

)2

≈ ∇p (β |θ )T
(
S2 + 1

NR

)
I−1θ ∇p (β |θ ) large N

≈
(

S2

NRp2

)
∇p (β |θ )T I−1θ ∇p (β |θ ) S2 �1

Similarly, since
√
N (p̈ (β |{β})− ṗ (β |{β}))→P N

(
0,∇p (β |θ )T

(
S2+1
SR

)
I−1θ ∇p (β |θ )

)

p̈ (β |{β})− ṗ (β |{β}) ∼ N
(
B

N
,∇p (β |θ )T

(
S2 + 1

SNR

)
I−1θ ∇p (β |θ )

)

where B is some non-zero bias. Therefore

E
[
|p̈ (β |{β})− ṗ (β |{β})|2

]
= V ar (p̈ (β |{β})− ṗ (β |{β})) + E [p̈ (β |{β})− ṗ (β |{β})]2

= ∇p (β |θ )T
(
S2 + 1

SNRp2

)
I−1θ ∇p (β |θ ) +

(
B

N

)2

≈ ∇p (β |θ )T
(
S2 + 1

SNR

)
I−1θ ∇p (β |θ ) large N

≈
(

S

NR

)
∇p (β |θ )T I−1θ ∇p (β |θ ) S2 �1

57



Theorem. Maximum Number of Shards

Claim. The maximum number of shards Smax, and an empirical estimate for C0 are, respectively,

1. Smax =

⌊
C0
2

(
NRε2max +

√
(NRε2max)2 − 4C−20

)⌋
≈
⌊
C0NRε

2
max

⌋
for S2 � 1, where C0 ={

supβ

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]}−1
and ε2max is the maximum expected squared error

2. C0 ≈
(
S2+1
SNR

){
supβk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]}−1
Proof. Denote the expected squared error between p̈ (β |{β}) and ṗ (β |{β}) as ε2 (β) for β ∈ Rd.

Therefore, ε2 (β) = E
[
|p̈ (β |{β})− ṗ (β |{β})|2

]
=
(
S2+1
SNR

)
∇p (β |θ )T I−1θ ∇p (β |θ ), for β ∈ Rd.

The maximum expected squared error is

ε2max = sup
β

[
ε2 (β)

]
= sup

β

[(
S2 + 1

SNR

)
∇p (β |θ )T I−1θ ∇p (β |θ )

]
=

(
S2 + 1

SNR

)
sup
β

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]

Define C0 =
{

supβ

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]}−1
so that ε2max =

(
S2+1
SNR

)
C−10 . Solving for the

maximum number of shards Smax subject to the maximum expected squared error ε2max

Smax =

NRε2max +
√

(NRε2max)2 − 4C−20

2C−10


≈

⌊
C0NRε

2
max

⌋
S2 � 1

∇p (β |θ )T I−1θ ∇p (β |θ ) must be computed at θ for β ∈ Rd. It is more convenient to empirically

estimate C0 =
{

supβ

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]}−1
for some small but sufficiently large N , so that
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N/S is large enough that the Bernstein-von Mises theorem applies.

ε2max = sup
β

[
ε2 (β)

]
(
S2 + 1

SNR

)
sup
β

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]
= sup

β

[
E
[
|p̈ (β |{β})− ṗ (β |{β})|2

]]
(
S2 + 1

SNR

)
C−10 ≈ sup

β

[
1

M

∑
m

|p̈m (β |{β})− ṗ (β |{β})|2
]

C0 ≈
(
S2 + 1

SNR

){
sup
β

[
1

M

∑
m

|p̈m (β |{β})− p (β |Y )|2
]}−1

≈
(
S2 + 1

SNR

){
sup
β

[
|p̈ (β |{β})− ṗ (β |{β})|2

]}−1

where p̈m (β |{β}) is the posterior predictive density estimator for the mth random partitioning of

data Y into S shards. For computational convenience, we let M = 1. C0 may be approximated by

computing
(
S2+1
SNR

){
supβ

[
|p̂ (β |Y )− ṗ (β |{β})|2

]}−1
.

Since β ∈ Rd, for d > 1 it may be computationally demanding to estimate supβ

[
|p̈ (β |{β})− ṗ (β |{β})|2

]
.

Let β = (β1, ..., βd)
T so that ṗ (βk |{β}) and p̈ (βk |{β}) denote the estimator for marginal poste-

rior predictive density and its estimator for β element k ∈ {1, ..., d}. We adopt the approximation

supβ

[
|p̈ (βk |{β})− ṗ (β |{β})|2

]
≈ C supβk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]
where C is a pro-

portionality constant that may be absorbed by C0. Therefore

C0 ≈
(
S2 + 1

SNR

){
sup

βk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]}−1

Theorem. Asymptotic Unbiasedness of p̈ (β |{β})

Claim. limN→∞E [p̈ (β |{β})] = ṗ (β |{β}), for β ∈ Rd

Proof. Let θrN denote the rth draw of θ from the posterior density p (θ |Y ), where N is the number

of units of data in Y . It is reasonable to assume that the sequence θr1, θr2,... of random vectors

is uniformly integrable because we may choose any prior density p (θ) that appropriately restricts
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the amount of probability in the tails of posterior p (θ |Y ) Since θrN →P θ (Theorem. Limit

Distributions, Step 1.1) and θrN is uniformly integrable, it follows that θrN →L1 θ by Grimmett

and Stirzaker (2007) Theorem 7.10(3). Therefore, for β ∈ Rd, ṗ (β |{β}) →L1 p (β |θ ) by the same

reasoning as in the Limit Distributions theorem in this article (replace convergence in probability

with L1-convergence).

Similarly, by the above reasoning, θrNs →
L1 θ and ṗ (β |{β}s ) →L1 p (β |θ ) . Again, follow-

ing the same reasoning as in the Limit Distributions theorem in this article (replace convergence

in probability with L1-convergence), it follows that p̈ (β |{β}) →L1 ṗ (β |{β}) and therefore that

limN→∞E [p̈ (β |{β})] = ṗ (β |{β}).

Theorem. Maximum Number of Shards with Stage One Subsampling

Claim. The maximum number of shards Smax with stage one sampling, and an empirical estimate

for C0 are, respectively,

1. Smax =

⌊
C0
2

(
NRε2maxp

2 +
√

(NRε2maxp
2)2 − 4p2C−20

)⌋
≈
⌊
C0NRε

2
maxp

2
⌋
for S2 � p2,

where C0 =
{

supβ

[
∇p (β |θ )T I−1θ ∇p (β |θ )

]}−1
and ε2max is the maximum expected squared

error

2. C0 ≈
(
S2+p2

SNR

){
supβk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]}−1
Proof. Let p denote the first stage subsampling rate, and replace Ns = N

S with Ns = Np
S in

Theorem. Limit Distributions, Step 1.2, to show that

√
NRp2/S (p̈ (β |{β})− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T

(
S2 + p2

S2

)
I−1θ ∇p (β |θ )

)
√
NRp2/S (p̈ (β |{β})− ṗ (β |{β})) →P N

(
0,∇p (β |θ )T I−1θ ∇p (β |θ )

)
S2 � p2

Follow Theorem. Expected Squared Error to show that

E
[
|p̈ (β |{β})− ṗ (β |{β})|2

]
= ∇p (β |θ )T

(
S2 + p2

SNRp2

)
I−1θ ∇p (β |θ )

≈
(

S

NRp2

)
∇p (β |θ )T I−1θ ∇p (β |θ ) S2 � p2
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Follow Theorem. Maximum Number of Shards to show that

Smax =

NRε2maxp2 +
√

(NRε2maxp
2)2 − 4p2C−20

2C−10


≈

⌊
C0NRε

2
maxp

2
⌋

S2 � p2

and C0 may be approximated by

C0 ≈
(
S2 + p2

SNR

){
sup

βk,k∈{1,...,d}

[
|p̈ (βk |{β})− ṗ (βk |{β})|2

]}−1
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9 Appendix: Proposed Algorithm with Stage One Subsampling

Algorithm A′
3 Stage one of the proposed algorithm with subsampling (for non-standard posteriors)

Stage One: Draw from β ∼ p̈ (β |{β})

Input: Y = ∪i {yit}Tt=1

Output: {βr}Rr=1

1. Sample Y with probability p ∈ (0, 1)

(a) Randomly assign each cross-sectional unit in the stage one sample
i. Ii ∼ Bernoulli (p), i = 1, ..., N

(b) Define Ip = {i : Ii = 1}, Np =
∑

i Ii,
(c) Y p = ∪i∈Ip {yit}Tt=1

2. Divide Y p into S independent shards

(a) Ips = {i ∈ Ip : zi = s}, s = 1, ..., S, where p (zi = s) = 1
S , and |I

p
s | = Np

S

(b) Y p
s = ∪i∈Ips {yit}

T
t=1, s = 1, ..., S

3. Run S parallel MCMC simulations (s = 1, ..., S)

(a) Set θ0s , β0i for all i ∈ I
p
s

(b) for r = 1 to R
i. Draw βri

∣∣θr−1s , Y p
s ∝ p

(
βri
∣∣θr−1s

)∏
t p (yit |βri ) for i ∈ Ips (Metropolis-Hastings draw)

ii. Draw θrs

∣∣∣{βri }i∈Ips ∼ p(θrs |τ )
∏
i∈Ips p (βri |θrs ) (standard draw using a conjugate prior)

(c) for r = 1 to R/S
i. Draw zr ∼Multinomial

(
n = 1, p =

{
1
R , ...,

1
R

})
ii. Draw βrs

∣∣θzrs ∼ p(β ∣∣θzrs )

4. Collect the β draws and shuffle

(a) β = ∪Ss=1 {βrs}
r=R/S
r=1

(b) β = permute (β)
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Figure 1: Convergence of marginals of posterior predictive density estimators

0 2 4 6

0
1

2
3

4
5

P
ro

po
se

d/
G

ib
bs

β3

Ns = 3,333  N = 100,000

0 2 4 6

0
1

2
3

4
5

P
ro

po
se

d/
G

ib
bs

Ns = 33,333  N = 1,000,000

−6 −4 −2 0 2

0
1

2
3

4
5

P
ro

po
se

d/
G

ib
bs

β4

Ns = 3,333  N = 100,000

−6 −4 −2 0 2

0
1

2
3

4
5

P
ro

po
se

d/
G

ib
bs

Ns = 33,333  N = 1,000,000

T = 5 observations per unit, S = 30 shards, and R = 10, 000 MCMC iterations including 2,000

iterations for burn-in ( ṗ(β|{β}s )
ṗ(β|{β} ) in grey, p̈(β|{β} )ṗ(β|{β} ) in red, ṗ(β|{β} )ṗ(β|{β} ) = 1 in blue)
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Figure 2: Convergence of unit-level posterior densities (with stage one subsampling): Q-Q plots

Q-Q plots of unit-specific draws from the proposed subsampling algorithm and the single machine
hybrid Gibbs algorithm, for a random sample of five units and T = 5, 15, and 45 observations per
unit. Ns = 3, 333 units per shard in the first stage, Ns = 33, 333 units per shard in the second stage,
N = 1, 000, 000 units, S = 30 shards, and R = 20, 000 MCMC iterations including 4,000 iterations
for burn-in
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Figure 3: Donor response: Convergence of marginals of posterior predictive density estimators
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S = 30 shards, Ns ≈ 36, 000 units per shard, and R = 40, 000 MCMC iterations including 5,000

iterations for burn-in ( ṗ(β|{β}s )
ṗ(β|{β} ) in grey, p̈(β|{β} )ṗ(β|{β} ) in red, ṗ(β|{β} )ṗ(β|{β} ) = 1 in blue)
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Table 1: Convergence of unit-level posterior densities (with stage one subsampling): Q-Q correla-
tions

T
β1 β2 β3 β4

1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median 1%ile 5%ile Median

5 0.992 0.996 0.999 0.994 0.997 0.999 0.990 0.996 0.999 0.992 0.9978 0.999
15 0.971 0.993 0.999 0.972 0.992 0.999 0.974 0.993 0.999 0.980 0.995 0.999
45 0.908 0.970 0.997 0.913 0.968 0.997 0.916 0.971 0.997 0.887 0.971 0.998

Correlation percentiles of unit-specific draw quantiles from the single machine hybrid Gibbs algo-
rithm and the proposed algorithm with stage one subsampling, for a random sample of 1,000 units.
Ns = 3, 333 units per shard in the first stage, Ns = 33, 333 units per shard in the second stage,
N = 1, 000, 000 units, S = 30 shards, and R = 20, 000 MCMC iterations including 4,000 iterations
for burn-in
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Table 2: Performance of the proposed algorithm (with stage one subsampling)

T Algorithm
Ns = 33, 333 N = 1, 000, 000

Time (minutes) ESS ESS/minute ESSProposed/min
ESSGibbs/min

5
Proposed 117 3,254 27.7 37.6

Subsampling∗ 27 3,294 122.0 165.4

15
Proposed 182 1,309 7.2 13.2

Subsampling∗ 68 1,318 19.3 35.3

45
Proposed 384 426 1.1 3.3

Subsampling∗ 174 430 2.5 7.5

Performance metrics are for a random sample of 1,000 units. For the proposed algorithm with first
stage subsampling, Ns = 3, 333 units per shard in the first stage (first stage sampling rate p = 10%),
Ns = 33, 333 units per shard in the second stage. S = 30 shards, and R = 20, 000 MCMC iterations
including 4,000 iterations for burn-in
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Table 3: Acceptance rates of the proposed algorithm (with stage one subsampling)

T Hybrid Gibbs (percent) Proposed Algorithm with Stage One Subsampling (percent)
5 20.2 36.8
15 21.5 16.6
45 22.9 5.0

Performance metrics are for a random sample of 1,000 units. Ns = 3, 333 units per shard in the first
stage (p = 10%), Ns = 33, 333 units per shard in the second stage, N = 1, 000, 000 units, S = 30
shards, R = 20, 000 MCMC iterations including a burn-in of 4, 000 iterations.
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Table 4: Scalability with N (with stage one subsampling)

Units Shards Units per Shard Algorithm Total Execution Time in minutes
N S Ns = N

S (I/O time)1

1 million 30 33,333 Proposed 61 (0)
Subsampling∗ 13 (0)

10 million 300 33,333 Proposed 76 (2)
Subsampling∗ 19 (3)

100 million 1,7282 57,870 Proposed 162 (21)
Subsampling∗ 78 (19)

Scalability testing is implemented on Comet, a large-scale cluster computing system at the Uni-
versity of California San Diego Supercomputer Center that uses a Lustre parallel distributed file
system. T = 5 observations, R = 20, 000 MCMC iterations including 4,000 iterations for burn-in,
keeping every 10th draw. For the proposed algorithm with stage one subsampling p = 10%.

1. I/O time is the amount of time in minutes that is used for transferring data to and from each
node for each stage. It is included in the total execution time.

2. Comet limits the number of cores that a single application may use at one time to 1,728
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