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Abstract When modeling the behavior of firms, marketers and micro-
economists routinely confront complex problems of strategic interaction. In
competitive environments, firms make strategic decisions that not only depend
on the features of the market, but also on their beliefs regarding the reactions
of their rivals. Structurally modeling these interactions requires formulating
and estimating a discrete game, a task which, until recently, was considered
intractable. Fortunately, two-step estimation methods have cracked the prob-
lem, fueling a growing literature in both marketing and economics that tackles
a host of issues from the optimal design of ATM networks to the choice
of pricing strategy. However, most existing methods have focused on only
the discrete choice of actions, ignoring a wealth of information contained
in post-choice outcome data and severely limiting the scope for performing
informative counterfactuals or identifying the deep structural parameters that
drive strategic decisions. The goal of this paper is to provide a method for
incorporating post-choice outcome data into static discrete games of incom-
plete information. In particular, our estimation approach adds a selection
correction to the two-step games approach, allowing the researcher to use
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revenue data, for example, to recover the costs associated with alternative
actions. Alternatively, a researcher might use R&D expenses to back out the
returns to innovation.

Keywords Discrete games · Selection · Incomplete information · EDLP ·
Pricing strategy · Two step estimators

JEL Classification C1 · C7 · M31 · L81

1 Introduction

By focusing on the nexus between firms and consumers, marketers and micro-
economists continually confront problems of strategic or social interaction.
The decision of where to locate a retail store not only depends on the specific
capabilities of the firm in question and the customers to whom it wishes to
sell its products, but also on the strategic reactions of its rivals. Similarly,
the decision of which gym to join may depend on whether a person’s spouse
or friends belong, as well as how often they intend to go. Not surprisingly,
structural models of strategic and social interaction are gaining traction in both
fields, providing insight into a host of issues from the optimal design of ATM
networks to the decision of whether and with whom to play golf. However, due
to both limitations in data availability and constraints inherent in the modeling
approach, researchers have almost exclusively focused on discrete outcomes,
treating profit or utility as a latent variable, usually parameterized via a
reduced form. While this makes efficient use of the often limited data at hand,
it can severely limit the usefulness of the model for performing informative
counterfactuals or identifying the deep parameters that drive these strategic
interactions. For example, in their study of supermarket pricing behavior,
Ellickson and Misra (2008) found strong evidence that supermarket chains
favor strategies that accord with their rivals, but were unable to pin down
exactly why such assortative matching was in fact beneficial to the firms. The
goal of this paper is to provide a method for incorporating additional, post-
choice outcome data into structural models of static discrete games that will
allow the researcher to obtain more nuanced insights into a firm’s decision
making and the nature of strategic interactions across firms.

Our approach combines classic techniques from the literature on selection
(Heckman 1974, 1979; Heckman and Robb 1985, 1986; Ahn and Powell 1993)
with recent two-step approaches to estimating discrete games (Aguirregabiria
and Mira 2007; Bajari et al. 2010). The basic idea is quite simple. With data
describing only discrete outcomes (e.g. entry, location, pricing strategy), we
can recover the strategic parameters that govern profitability using existing
methods adapted from the discrete choice literature. If, in addition, we also
observe post-choice outcome data (e.g. revenues or costs), we can potentially
decompose the determinants of profits into its more primitive components.
However, to do so, we must first correct for selection bias stemming from the
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fact that we observe only the revenues or costs for the action that was ulti-
mately chosen. By definition, this is the choice that maximized profits relative
to all other options, implying that any unobserved shock that influences this
discrete choice must also have a direct impact on either revenue or costs (or
both), inducing a selection bias that must be accounted for in the outcome
equation. Fortunately, by framing the underlying game as one of incomplete
information, flexible semi-parametric methods for selectivity correction can
be applied directly. We can then use selectivity-corrected outcome equations
to construct either revenue or cost counterfactuals (depending on which type
of data are actually observed) that characterize the difference between the
chosen action and any feasible alternative. Drawing on a revealed preference
argument, a final inequality estimator can then be employed to recover the
remaining parameters that govern either revenues or costs. In the simplest,
fully parametric version of our approach, estimation consists of four steps,
none more complicated that either a multinomial logit or a linear regression.
Furthermore, because the initial stage of the estimation can be performed
either market by market or firm by firm, our methods are robust to multiplicity
of equilibria and can also be easily extended to account for heterogeneity,
given access to sufficiently rich data.1

We illustrate our estimation technique with an empirical exercise that
builds on an earlier analysis of supermarket pricing strategies. In a recent
paper, Ellickson and Misra (2008) treat a supermarket’s pricing decision as
a discrete, store level game between rival chains and estimate the parameters
of a reduced form profit function using techniques developed in Bajari et al.
(2010). While they find strong evidence of assortative matching by strategy
(i.e. firms prefer to offer Every Day Low Prices (EDLP) when they expect
their rivals to do likewise), they are unable to pin down exactly why such a
strategy is profitable (i.e. is it revenues? or costs? or a combination of both?).
However, by including data on revenues (along with the discrete strategic
choice of pricing strategy), we are now able to do so. We find that firms choose
their pricing strategy primarily to economize on costs. For example, firms that
choose EDLP typically take a revenue hit relative to choosing a promotional
strategy. However, the cost savings associated with EDLP outweigh the ex-
pected revenue loss, making it profitable on balance. Furthermore, we find that
the coordination of strategies across firms is also driven by cost savings, rather
than demand or revenue considerations. Having more rivals choose your same
pricing strategy certainly reduces your revenues, consistent with a standard
congestion or business-stealing story. However, it actually reduces your costs

1Multiplicity of equilibria can make it difficult to construct a likelihood since, in the absence of a
clear selection rule, the model is effectively incomplete. If the researcher is willing to assume that
only one equilibrium is played in the data, two-step methods restore completeness by allowing
the (pseudo) likelihood function to condition on the equilibrium that was in fact selected. By
estimating the first stage market by market, this equilibrium restriction can be weakened to
requiring only that a single equilibrium be played in each market.



4 P.B. Ellickson, S. Misra

more. This suggests that, at least in the case of pricing strategies, the costs of
differentiation can outweigh its benefits, leading to coordination.

Our approach draws on a rich body of literature spanning several areas of
applied microeconomics and quantitative marketing. While empirical interest
in discrete games of complete information dates to the seminal work of
Bresnahan and Reiss (1991a, b), our approach is more closely connected to the
incomplete information framework proposed by Rust (1994) and implemented
by Seim (2006) and Bajari et al. (2010).2 In particular, the incomplete infor-
mation assumption is key to breaking a system of equations into a collection
of single agent problems in which selection can be addressed directly. The
connection between selectivity and discrete games was first addressed by Reiss
and Spiller (1989), and later by Mazzeo (2002), both in the context complete
information games. Zhu et al. (2009) use Mazzeo’s complete information ap-
proach to incorporate revenue data into an entry model applied to the discount
store industry. Our approach to selectivity clearly draws on the classic work of
Heckman (1974, 1979), and most directly on the semi-parametric propensity-
score based methods introduced by Heckman and Robb (1985, 1986) and Ahn
and Powell (1993). The mixed continuous-discrete choice structure of the prob-
lem has obvious antecedents in both the consumer demand literature (Dubin
and McFadden 1984; Hanemann 1984) and empirical applications of the (Roy
1951) model (Heckman and Honore 1990; Dahl 2002). Finally, the emphasis
on inequality conditions derived from revealed preference arguments and
the specific decomposition of the errors into structural and non-structural
components draws upon the recent moment inequality literature (Pakes et al.
2006).

The paper is organized as follows. Section 2 presents a general model of stra-
tegic interaction and outlines our four step approach for selectivity-corrected
estimation. Section 3 presents our empirical application and Section 4 concludes.

2 A model of strategic interactions

Our model of strategic interactions is based on the static discrete game frame-
work analyzed in Bajari et al. (2010). After introducing the basic notation,
profit maximization conditions, and equilibrium concept, we outline our four-
step estimation procedure. Our algorithm proceeds as follows. The first step,
which is common to the literature on discrete games, involves flexibly estimat-
ing firm beliefs using standard non- or semi-parametric techniques. Note that
these conditional choice probabilities (CCPs) will also form the basis of the
selection correction utilized in step two. The second step involves estimating

2There is a wide and growing literature on discrete games in both economics and marketing.
Notable examples include Aguirregabiria and Mira (2007), Bajari et al. (2007), Berry (1992), Pakes
et al. (2007), Draganska et al. (2009), Hartmann (2010), Ho (2009), Orhun (2006), Pesendorfer and
Schmidt-Dengler (2007), Sweeting (2009), Vitorino (2007), and Zhu and Singh (2009). Ellickson
and Misra (2011) provide an overview of this rapidly expanding field.
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selectivity-corrected outcome equations, which yield consistent estimates of
revenues (or costs, depending on the nature of available data) as a function of
exogenous covariates and the (endogenous) actions of each firm’s rivals. These
revenue (or cost) functions represent one component of the payoffs each firm
expects to receive from its discrete choice of action. To recover the second
component, we turn to a revealed preference argument. Using the revenue
(cost) functions, we can construct the revenues (costs) that the firm expected
to earn (incur) from both the choice it actually made, as well as the remaining
alternatives that it did not. If the chosen action did not yield the highest rev-
enue (lowest cost), then it must have been driven by offsetting cost (revenue)
advantages. Thus, the third step requires constructing counterfactual revenue
(or cost) differences, which capture the first component of this trade-off. The
fourth and final step uses inequalities based on the necessary conditions for
profit maximization to recover the second component. Standard errors are
obtained via the bootstrap.

2.1 A discrete game of incomplete information

Although we will introduce a more complex notation for the subsequent
empirical exercise, we work here with a simplified structure that closely follows
that of Bajari et al. (2010). We assume that in each market (whose subscript
we suppress for brevity), there are a finite number of players (i = 1, ..., n)

each choosing a discrete action ai ∈ {0, 1, ..., K} simultaneously from a finite
set. The set of possible action profiles is then A = {0, 1, ..., K}n with generic
element a = (a1, ..., an), while the vector of player i’s rivals’ actions is then
a−i = (a1, ..., ai−1, ai+1, ..., an).

The state vector for player i is denoted si ∈ Si, while the state vector of all n
players is given by s = (s1, ..., sn) ∈ �iSi. The state vector s is known to all firms
and observed by the econometrician. It describes features of the market and
characteristics of the firms that are assumed to be determined exogenously.
For each firm, there are also two privately observed state variables. While
each firm observes its own private state variables, they are known to the
econometrician and rival firms only in distribution. These privately observed
state variables are denoted εR

i (ai) and εC
i (ai), or more compactly εR

i and εC
i ,

and represent firm specific shocks to the revenue (R) and cost (C) associ-
ated with each strategy. We will sometimes write the two element vector of
private shocks as εi. The private information assumption makes this a game
of incomplete or asymmetric information and the appropriate equilibrium
concept one of Bayes Nash Equilibrium (BNE). For any given market, the
ε’s are assumed to be i.i.d. across firms and actions. They are drawn from a
joint distribution f

(
εR

i , εC
i

)
will full support on R2, that is known to everyone,

including the econometrician. Revenues and costs are also subject to a second
pair of firm specific shocks denoted ηR

i and ηC
i (or, more compactly, ηi), each

of which is assumed to be mean zero. Note that, in contrast to the private
information components (εR

i and εC
i ), this additional source of randomness

is not observed by the firm prior to making its discrete choice over actions.
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Following Pakes et al. (2006), these ex post realizations could represent either
expectation errors (due, perhaps, to incomplete or asymmetric information)
or errors in the measurement of revenues or costs. The key distinction is that,
unlike εR

i and εC
i , ηR

i and ηC
i do not impact firm behavior, so they can be

ignored when constructing beliefs. For notational simplicity, we will emphasize
the “expectational” interpretation in what follows, but note that this distinction
has no operational impact.

Firms choose strategies with the objective of maximizing expected profits

πi
(
s, ai = k, a−i, εi (k) , ηi (k) ; θk) = Rk

i − Ck
i , (1)

broken out here as revenue minus costs. More generally, we could work
instead with variable prof its minus f ixed costs, which would allow access to
a deeper level of structure. Since reliable data on costs (or margins) is rarely
available, we emphasize the current structure here.

The revenue and cost terms are assumed to be structured as follows

Rk
i = R

(
s, ai = k, a−i; θk

R

) + εR
i (k) + ηR

i (k) (2)

Ck
i = C

(
s, ai = k, a−i; θk

C

) + εC
i (k) + ηC

i (k) , (3)

where the deterministic components (R and C) need only belong to a finite-
dimensional parametric family. Following the standard selectivity literature,
we will assume additive separability of the stochastic components throughout.
Additive separability is a standard assumption in the discrete games literature
as well. Note that, while this structure is quite flexible, it does place some
restrictions on the types of outcome data that can be accommodated by our
approach.3

Consistent with the informational structure of the game, we assume firms
choose the action ai that yields the highest expected profit relative to all
alternatives, so that

E
[
πi

(
s, ai =k, a−i, εi (k) , ηi (k) ; θk)−πi

(
s, ai =k′, a−i, εi

(
k′) , ηi

(
k′) ; θk′)]

≥ 0

(4)
for all k′. Note that the expectation is over the actions of rival firms, as well as
both expectation errors.

2.2 Constructing firm beliefs

As is now well known in the empirical games literature, the structure of a
discrete game differs from a standard discrete choice model in that the actions
of a firm’s rivals enter its payoff function directly. In particular, the game
structure transforms the standard single agent discrete choice problem into

3For example, if the researcher had access to detailed price and quantity data and chose to specify
a discrete choice demand system with a “Nash in prices” supply side (e.g. Berry et al. 1995), the
relevant structural errors would most naturally enter in a highly non-linear manner that could not
easily be accommodated here.
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a system of simultaneous discrete choice problems. Since this is a game of
incomplete information, firms cannot perfectly predict the actions of their
rivals. Moreover, since the ε’s are treated as private information, a particular
firm’s decision rule ai = di

(
s, εR

i , εC
i , E(ηi)

) = di
(
s, εR

i , εC
i

)
is a function of the

state vector (s) and its own private information, but not the private information
of its rivals.4 In other words, each firm’s beliefs over what its competitors will
do will be a function of observables alone. Thus, from the perspective of its
rivals, the probability that a given firm chooses action k conditional on the
common state vector s is given by

Pi (ai = k|s) =
∫ ∫

1
{
di

(
s, εR

i , εC
i

) = k
}

f
(
εR

i , εC
i

)
dεR

i dεC
i (5)

where 1
{
di

(
s, εR

i , εC
i

) = k
}

is an indicator function equal to 1 if firm i chooses
action k and 0 otherwise. We let P denote the vector of these probabilities.
Since the firm does not observe the actions of its competitors prior to choosing
its own action, its decision is based on these expectations.

2.3 Incorporating information on post choice outcomes

The inclusion of post-choice outcome data distinguishes our approach from
existing two-step methods for estimating discrete games. While this auxiliary
data could potentially take many forms (e.g. prices, quantities, revenues, costs,
etc.), we focus on revenues since i) revenue data is often easier to obtain
than information on costs, and ii) price and quantity data would require the
researcher to impose additional structure (e.g. a demand system and a price
setting mechanism) in which the structural errors would be unlikely to enter in
an additively separable manner.5 The inclusion of revenue data also matches
the empirical example presented below. Clearly, the case where costs are
observed instead is completely analogous (albeit less cleanly identified, as
discussed below). Of course, having actual variable profit (or margin) data is
also easily accommodated in our framework.

2.3.1 Calibrating revenue

Given data on revenues, recall that we have assumed that they can be decom-
posed as some function of the state vector and observed player actions, along
with an additive (private information) revenue shock

(
εR

i (k)
)

and an additive
expectation error

(
ηR

i (k)
)

Rk
i = R

(
s, ai = k, a−i; θk

R

) + εR
i (k) + ηR

i (k) . (6)

4Note that, because we have assumed that the expectational errors do not impact firm behavior,
they drop out of the relevant decision rules.
5The extension of selectivity-correction techniques to settings with non-separable errors is beyond
the scope of this paper.
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Since the error components (η and ε) are indistinguishable from the perspec-
tive of the econometrician, the revenue function can equivalently be written as

Rk
i = R

(
s, ai = k, a−i; θk

R

) + ωR
i (k) (7)

where ωR
i (k) = εR

i (k) + ηR
i (k) . Because we only observe revenues for the

strategies that are actually chosen, there is a selectivity problem: firms choose
the strategy that maximizes profits, based in part on the same unobservables
εR

i (k) that impact revenues. In particular, E
(
ωR

i |ai = k
) �= 0, although the se-

lectivity bias is clearly driven by εR
i (k). Consequently, consistent estimation of

the revenue equation requires accounting for the sample selection bias induced
by the underlying discrete game. Fortunately, the incomplete information
structure allows this correction to take place using a standard, propensity-
score based control function approach. We will specify how this is done below.
However, before doing so, we must first parameterize the cost function.

2.3.2 Cost parameterization

We adopt a similar specification for the cost function as for revenue,

Ck
i = C

(
s, ai = k, a−i; θk

C

) + εC
i (k) + ηC

i (k) . (8)

Once again, ε is treated as private information while η is expectation error
that is realized ex post. However, since costs are unobserved, we must now
employ a latent variable approach and work with cost dif ferences rather than
levels. We adopt the following structure for these differences

E
[
Ck

i − Ck′
i

]
= �Ci

(
k, k′|s, P,θC

) + �εC
i

(
k, k′) (9)

where �εC
i

(
k, k′) = εC

i (k) − εC
i

(
k′) and

�Ci
(
k, k′|s, P,θC

) = E
(

C
(
s, ai = k, a−i; θk

C

) − C
(

s, ai = k′, a−i; θk′
C

))
(10)

Note that since the firm makes its discrete decisions based on expected rev-
enues and costs, the expectation errors (η) drop out, allowing realized actions
to be replaced by expected actions (probabilities). In particular, because these
“expectational” errors are unknown to the firm at the time that decisions are
made, they can be integrated out. Having parameterized the full model, we are
now ready to outline our estimation algorithm.

2.3.3 Constructing the likelihood

Let �k
i be an indicator function indicating that firm i chooses action k,

conditional on the common parameter vector (θ), the common vector of state
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variables (s), the firm’s privately observed cost and revenue shocks (ε), and the
expectations it has regarding the actions of its rivals (P) . This can be written as

�k
i

(
ai = k|P, s,εR

i , εC
i ; θ

)

=
∑

k′ �=k

1
(
Eη

[
πi

(
s, ai = k, P−i, εi (k) , ηi (k) ; θk

)

−πi
(
s, ai = k′, P−i, εi

(
k′) , ηi

(
k′) ; θk′)

]
> 0

)
. (11)

Let g
(
r|s, a = k∗, εR; θR

)
be the joint conditional density of observed reve-

nues (r) generated by the expectation error terms (η). The conditioning reflects
the fact that the observed vector of revenues (across players), r, is conditioned
on the state variables (s), the actions6 of all players (a) , the (private) revenue
shocks

(
εR

)
, and the revenue function parameters (θR). Finally, let k∗ denote

the vector of observed actions.
Given these components, the likelihood contribution from an arbitrary

market can be written as

L =
∫

g
(
r|s, a = k∗, εR; θR

)
f
(
εR|a = k∗) dεR

×
∏

i

∫ ∫
�k∗

i

(
ai = k∗|P, s, εR

i , εC
i ; θ

)
f
(
εR

i , εC
i

)
dεR

i dεC
i

where f
(
εR|a = k∗) is the marginal density of εR conditional on the observed

vector of actions, while P has elements defined by

Pk
i (ai = k) =

∫ ∫
�k

i

(
ai = k|P, s, εR

i , εC
i ; θ

)
f
(
εR

i , εC
i

)
dεR

i dεC
i .

A few comments on the structure of the likelihood function are warranted
here. First, note that εR and θR enter both g and �, reflecting the underlying
structural connection between the discrete choice of action and the resulting
equilibrium outcome. This is similar to the discrete-continuous demand model
proposed by Hanemann (1984), in which the choice of product impacts the
choice of how much to consume through the underlying utility-theoretic
framework. However, in contrast to Hanemann’s consumer demand context,
our setting involves multiple agents interacting in a discrete game, with the
observed choice probabilities representing the equilibrium outcome of the
game. The equilibrium constraint forces the agents expectations to match
the corresponding equilibrium probabilities. This equilibrium constraint can
complicate the evaluation of the likelihood function since, absent a clear
selection rule, the direct nested fixed point approach (Rust 1987) to satisfying
this constraint will be mis-specified if there is more than one fixed point (see Su
and Judd 2007). Finally, we note that even with an equilibrium selection rule
in place, maximizing the constrained likelihood is a numerically challenging

6Note that the observed revenues of a given store are a function of the realized actions of
competing stores, not their expected actions. The expected actions of a store’s rivals impact its
expected revenues and, through those, its own action.
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task. In what follows, we present a sequential estimation algorithm that greatly
simplifies estimation.

2.4 Methodology: sequential estimation

In this section, we present our general estimation strategy, which involves four
sequential steps. The intuition behind the algorithm is straightforward. Profits
are the linear difference between revenues and costs. If we can characterize the
impact of the state variables on revenues and use these functions to construct
counterfactual revenues for the choices we do not observe, the conditions for
profit maximization will capture the effect of the state variables on costs via
revealed preference. The four steps that constitute our estimation algorithm
are listed below. In what follows, we discuss each step in detail.

Step 1: Estimate each firm’s beliefs via conditional choice probabilities
(CCPs)

Step 2: Using these CCPs, estimate selectivity-corrected revenue equations
Step 3: Using these revenue equations, construct counterfactual revenue

differences
Step 4: Estimate the remaining cost parameters from the profit inequalities

Step 1: Recovering equilibrium beliefs and constructing control functions The
first step is exactly the same exercise employed in existing two-step approaches
to estimating static games (e.g. Bajari et al. 2010). Note that here (as there) it
is crucial that the first step provide consistent estimates P̂ of the conditional
choice probabilities, since these will in turn be used to construct estimates
of players’ expectations over rivals’ actions. Furthermore, P̂ is also a key
component in the selectivity correction that follows, since we employ the
control function approach suggested by Heckman and Robb (1985, 1986) and
Ahn and Powell (1993). Clearly, there are numerous non- and semi-parametric
approaches to constructing P̂ in a flexible manner. These might include simple
frequencies, the method of sieves, kernel or local linear regressions, or series
estimators. Ideally, the researcher should use non-parametric methods to
implement this step since the true functional form of these reduced form choice
probabilities can rarely be specified a priori (even if the underlying profit
function has a simple structure). Of course, if data limitations exist, one may
have to employ less data intensive semi-parametric or even fully parametric
methods. In such cases, it might be best to use an iterative approach (e.g.
Aguirregabiria and Mira’s (2007) Nested Pseudo Likelihood algorithm) to
obtain consistent estimates of the choice probabilities. Note that an iterative
approach could also be used to accommodate unobserved state variables, as in
Ellickson and Misra (2008).

Step 2: Estimating selectivity-corrected revenue functions The second step
recovers the parameters of the revenue function, correcting for the sample se-
lection bias induced by the underlying discrete game. The approach advocated
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here follows the semi-parametric, propensity-score based methods suggested
by Heckman and Robb (1985, 1986) and Ahn and Powell (1993), which
impose relatively weak assumptions on the underlying selection mechanism.
Implementation is straightforward. We show in the “Appendix” that our
approach amounts to running separate revenue regressions for each strategy
(k) , including the control function 	k

(
P̂i

)
, which is a flexible function of P̂i.

Specifically, the regression equations are given by

rk
i = R

(
s, ai = k, a−i; θk

R

) + ω̃R
i (k) + 	k

(
P̂i

)
(12)

In practice, the control function 	k
(
P̂i

)
can be approximated using splines

or series expansions (polynomials). The main advantage of this approach is
that it relies only on P̂i in the correction term and does not require any
parametric assumption on the error structure (apart from the index restriction
common to all of these methods). While this flexibility does come at some
cost, the alternative would be to impose particular distributions on the ε and η

such that the selectivity correction is empirically tractable. This is not a trivial
task since (i) we are analyzing a multinomial choice problem, and (ii) the same
errors appear in both the selection equation (choice model) and in the outcome
equation (revenue regression). These issues also distinguish our framework
from the classic selectivity approach in which the errors in the two equations
are simply assumed to be correlated (see e.g. Mazzeo 2002).7

We should also note here that our problem simplifies greatly due to the
private information assumptions employed in the set-up of the discrete game.
Since the private information components are i.i.d. across players and actions,
the fact that these actions enter the regression equation does not raise endo-
geneity issues. In particular, the private information assumption (on ε) allows
the joint selectivity problem (that the revenues of all players are conditioned
on the actions of all players) to be decomposed into a collection of individual
selectivity problems.8 The revenues may ex-post be correlated across players
on account of the expectation errors (η’s), but this raises no further difficulties.

7Note that this does not preclude the econometrician from employing specific distributions (e.g.
extreme value errors for ε) since these assumptions can be imposed in the final step of our
algorithm. Remaining agnostic about these errors at this point simply retains flexibility while also
being fairly simple to implement.
8Note that in cases where the cardinality of an individual firm’s choice set is large (i.e. there are
many potential discrete actions), the researcher will likely face a dimensionality issue in modeling
	k

(
P̂i

)
that is analogous to the curse of dimensionality associated with many multinomial

choice problems. For example, constructing a control function via a second order polynomial
approximation with J alternatives would require estimating J + � J

i=1i terms (so with 5 alternatives,
one would have to estimate 20 parameters for the selectivity correction component alone). One
possible solution is to assume that Dahl’s (2002) index suf f iciency assumption holds, and rely only

on 	k

(
P̂k

iq : q ⊂ K
)

. Unfortunately, this reduction in dimension is somewhat ad-hoc in that it is

not based on any utility theoretic primitive and is inconsistent with many canonical examples (e.g.
multinomial probit).
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Step 3: Constructing counterfactual revenue dif ferences Having obtained θ̂R,

a consistent estimate of the parameter vector θR characterizing the revenue
function, in step 2, the next step is to construct counterfactual revenue

differences ̂�rkk′
i = r̂k

i − r̂k′
i , computed from the difference between the fitted

revenues constructed in step 1. These counterfactual revenue differences
(CRDs) capture the difference in revenues associated with making choice k
instead of k′. In practice, the CRDs are simply the fitted revenue differences
between the strategy that was chosen (k) and those that were not

(
k′). Note

here that ̂�rkk′
i is not the complete ex-ante expected revenue difference since

it does not include the private information terms. However, this redounds to
our advantage since we can now plug these CRDs directly into the structural
choice problem to estimate the cost differences without worrying about the
private information components.9

Step 4: Estimating prof it inequalities Once the CRDs are known, the condi-
tions (4) ensuring that expected profits are maximized can be used to estimate
the parameters of the implied cost differences. These necessary conditions
yield the following empirical profit inequalities:

̂�rkk′
i − �Ci

(
k, k′|s, P̂,θC

) ≥ κi (13)

where κi = �εC
i − �εR

i represents the difference in the private information
components for strategies k and k′ and �Ci

(
k, k′|s, P̂,θC

)
the cost difference

defined by Eq. 10. Any set of parameters θ̂C that satisfy Eq. 13 yield a
consistent estimate of θC. Estimation can be performed parametrically (using
a multinomial logit, for example) by imposing specific assumptions on κ (via
appropriate assumptions on ε) or semi-parametrically using a maximum score
approach. Alternatively, a bounds estimator similar to the moment inequalities
methods proposed in Pakes et al. (2006) could be used instead. The estimation
approach outlined here has been kept deliberately general. The actual imple-
mentation of the approach would require application-specific decisions on the
part of the researcher. In the empirical application that follows, we provide an
concrete example of how these choices might be made in practice.

2.5 Discussion

2.5.1 Identif ication

In empirical static discrete games, as in standard discrete choice models,
identification of the latent profit or payoff parameters relies on the covariation

9In other words, simply plugging in revenue data for the observed choice would lead to mis-
specification since these data include realizations of the private information components and
measurement error shocks. The latter is explicitly not in the firm’s information set when the
discrete choice is being made.
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between the explanatory variables and the revealed choice data. The iden-
tification of the strategic effects, however, is slightly more involved, requiring
explicit exclusion restrictions. These exclusion restrictions should ideally take
the form of continuous covariates that impact the payoffs of each individual
player directly, but do not influence the payoffs of the other players (except
through their expected actions). Given these exclusions, the strategic effects
are identified since the variation in the beliefs a firm has over its competitors’
actions are now driven at least in part by covariates that do not shift its own
profits directly.10 Our methodology also requires such exclusion restrictions.

In addition to having exclusion restrictions across firms, we also need
another set of exclusion restrictions within each firm. These restrictions are
required to identify the revenue regression parameters. Since the selectivity
correction term is also a function of state variables, its inclusion in the second
step regression equation poses identification problems. The solution in the
selectivity literature (see e.g. Vella 1998) is to have a set of variables that
impact the discrete choice but are excluded from the regression specification.
The economic structure of our problem helps in this regard since costs are, by
definition, excluded from revenues. More precisely, all we need are variables
that are assumed to shift costs but not revenues. Ideal exclusions, in our
opinion, are variables that influence fixed costs since these can be assumed
in most typical economic models to be independent of demand side constructs.
In the context of retail competition, reasonable candidates might include land
rent or property values, various zoning restrictions, or individual distances to
distribution centers or central headquarters. Note that the two sets of exclusion
restrictions (within and across firms) could overlap as long as they include
some elements that are not common to both.

2.5.2 Inference

Since the multi-step structure of our estimation routine renders standard
analytic approaches to inference intractable, we construct standard errors
via the bootstrap. The construction of such a bootstrap procedure requires
some care, since simply bootstrapping over observations would result in severe
biases (i.e. we might drop a firm from a given market). In our application, we
bootstrap over markets, which is straightforward since we have many markets
that are assumed to be independent of each other. Future research might
investigate other approaches such as subsampling or jack-knife methods.

Finally, the consistency of our estimates follow directly from the arguments
laid out in the selectivity (Ahn and Powell 1993) and static games (Bajari et al.
2010) literature. Because our algorithm is simply an extension of standard
“two-step” procedures, the usual arguments based on Newey and McFadden

10We note here that there is no collinearity problem per se since the beliefs are typically nonlinear
transformations of expected payoffs. However, in the absence of exclusion restrictions, the
identification of strategic effects is based purely on parametric assumptions on the error structure
and the functional form restrictions on the payoffs.
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(1994) apply here as well. In general, as long as the first stage is consistently
estimated, each subsequent stage will yield consistent estimates.

2.5.3 Sampling properties

To be clear, while the recipe outlined in this paper provides consistent es-
timates it is nevertheless inefficient relative to a full-solution approach as
proposed by Rust (1987). In particular, the degree to which the first stage is
estimated with noise directly impacts the amount of small sample bias gener-
ated in the estimator. Our estimator is not alone in this regard, as a similar
criticism applies to two-step estimation of single agent dynamic problems
as well as dynamic games, and two-step methods in general. Monte Carlo
evidence examining this issue is available in a number of papers, including
Hotz et al. (1994) and Aguirregabiria and Mira (2002, 2007). However, as we
noted earlier our proposed estimator may be iterated to mitigate this bias by
iterating on the fixed point mapping in probability space.11 Aguirregabiria and
Mira (2002) provide Monte Carlo evidence documenting both the small sample
bias and the resulting improvements associated with this iteration procedure.

The actual magnitude of the small-sample bias depends on a number of
factors including sample size, the dimensionality of the state space, the number
of players, the cardinality of the action space and the flexibility afforded
to the model in the first stage. While we cannot make a general statement
as to the small sample properties of our estimator we conducted a limited
Monte-Carlo investigation of its properties to assess its coverage properties.12

In particular, we examined the role of sample size, number of players and
the number of covariates with the rest of the specification fixed to those in
our empirical application. Our overall results were quite encouraging: First,
in no simulation did the coverage probability drop below 83% with the vast
majority of simulations exhibiting decent coverage (90% or higher). In all
cases, low coverage (<90%) occurred when the sample size and the number
of players happened to be small relative to the number of covariates. Again,
these coverage properties are specific to the particular assumptions of our
game structure and we are not claiming them to be universally representative.
To a researcher looking to use these methods, we would suggest undertaking
a similar exercise in their particular application setting.

3 Application: supermarket pricing strategies

To illustrate how our approach can be applied in practice, we extend the empir-
ical model of supermarket pricing strategies introduced in Ellickson and Misra

11This strategy implicitly requires that the equilibria that is played be stable. Pesendorfer and
Schmidt-Dengler (2010) provide an example in which the equilibria is not stable and such iteration
yields inconsistent estimates.
12Further details are available from the authors upon request.
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(2008) to incorporate store-level data on revenue. For the sake of brevity,
we provide only a cursory overview of the choice model and dataset here,
referring readers to the previous paper for a more detailed description. Pricing
decisions are modeled as a static, discrete game of incomplete information in
which supermarket firms choose among three pricing strategies: Every Day
Low Pricing (EDLP), Promotional Pricing (PROMO), and mixture of the two,
commonly known as hybrid pricing (HYBRID). Firms choose the strategy
that maximizes expected store-level profits given their beliefs regarding the
actions of their rivals. Firms condition their choices on an underlying state
variable that includes both store and firm level covariates, as well as market-
level demographics. Using a two-step estimation procedure based on Bajari
et al. (2010) and Aguirregabiria and Mira (2007), Ellickson and Misra (2008)
find that competing stores coordinate on the choice of pricing strategy. For
example, stores that choose EDLP expect to earn higher profits when their
rivals do likewise. The purpose of the current exercise is to uncover why.

3.1 Implementation

Our implementation follows the four step procedure described above. In the
first step, we recover consistent estimates of the choice probabilities that will
be used to construct firm’s beliefs, as well as the control functions employed in
step two. Although firms are choosing among just three pricing strategies, the
inclusion of a large number of continuous covariates precludes the use of fully
flexible non-parametric methods for predicting probabilities (e.g. kernel, sieve,
or series estimators). Therefore, we proceed semi-parametrically, estimating
the first stage market by market using a flexible multinomial logit specification
that includes higher order terms for each covariate, along with a full set of
bivariate interactions. Note that this allows for the possibility that a different
equilibrium is played in each market.

The consistent estimates of the choice probabilities (i.e. P̂) obtained in this
first stage are used to construct the control functions that correct for selectivity
in the second stage revenue regressions. Since we only model three choices, the
curse of dimensionality that can arise in constructing control functions is not
a concern. We do not need to make any additional assumptions (e.g. index
sufficiency) to reduce the dimensionality. Given the large amount of data at
our disposal, we were able to employ third order polynomials to approximate
	k (P). We also experimented with higher order terms and B-splines but found
only very small differences in the resulting estimates.

The third step is straightforward, simply requiring the construction of pre-
dicted actual and counterfactual revenues, based on the observed covariates
and the results from step 2. With these counterfactual revenue differences in
hand, we move on to the final step, in which we recover the cost differences
that rationalize the observed choices given the expected revenue differences
constructed in step 3. Here, we again take a semi-parametric approach, this
time based on pair-wise comparisons between the selected choice and each
of the unchosen alternatives. In particular, we use a smoothed pair-wise
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maximum score procedure based on the methods developed in Fox (2007).
The results of an alternative specification employing a simple multinomial
logit framework (not reported) were broadly similar. All standard errors were
obtained by bootstrapping over markets.

3.2 Results and discussion

3.2.1 Step 1: estimating beliefs

As noted above, the first step was carried out using a flexible multinomial
logit specification. Since the coefficient estimates from this procedure are
not particularly enlightening (and only the fitted values will be used in what
follows), we simply note here that 64.8% of stores’s pricing strategy were
correctly classified by this first stage. This measure of fit is represented
visually in Fig. 1, which plots the predicted profit differences (i.e. inverted
probabilities) for each observation (store) in the dataset. The vertical axis
shows HYBRID profits (relative to PROMO) while the horizontal axis plots
EDLP (again versus PROMO). The observations are color coded by strategy
(HYBRID is orange, EDLP is blue, and HYBRID is black), yielding a clear
visual indication of relative fit. This should provide some level of confidence
in the selection corrections that follow.

3.2.2 Step 2: revenue function estimates

In step 2, we project observed store level revenues onto several covariates
characterizing the relative size and attractiveness of a given market, along
with two observed measures of rival actions (the share of rival stores choosing
EDLP and PROMO, respectively). Note that, in the estimation of the revenue
regressions, we use the actual choices of the competitors, as opposed to
expectations. These revenue regressions are corrected for selectivity using the
control functions described above. The results of this exercise are presented
in Table 1. The first three columns contain the revenue regression estimates
for the EDLP, HYBRID, and PROMO strategies, while the last two columns

Fig. 1 Overall fit
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Table 1 Selectivity corrected revenue regressions

EDLP HYBRID PROMO βE − βP βH − βP

Intercept −0.5072 −0.3148 0.3895 −0.8967 −0.7043
ρE

−ilmj
−0.0269 −0.0305 −0.0126 −0.0143 −0.0179

ρP
−ilmj

−0.0184 −0.0091ns −0.0220 0.0037 0.0129

Population density 0.3975 0.6347 0.3944 0.0031 0.2403
Store size 0.0803 0.0765 0.0696 0.0107 0.0069
Chain size −0.0004 0.0001 0.0003 −0.0007 −0.0003
Proportion black −0.4223 −0.4916 −0.3600 −0.0623 −0.1316
Proportion hispanic 0.5684 0.3848 −0.2475 0.8158 0.6323
Median HH income 0.0165 0.0214 0.0174 −0.0009 0.0040
Median HH # of vehicles −0.5133 −0.5242 −0.4827 −0.0306 −0.0415
Median HH size 0.0027ns −0.1047ns 0.1522 −0.1548 −0.2569

All coefficients are significant at the α = 0.05 except where noted

contain the coefficients for EDLP and HYBRID differenced against those of
PROMO. With just three exceptions, all coefficients are significant at the 5%
level.

As one might expect, population density, store size, and median income all
have a positive and significant impact on revenue, irrespective of the particular
choice of pricing strategy. Similarly, the percentage of African American
shoppers and the median number of vehicles have a negative impact. The latter
covariate most likely reflects consumers’ increased ability to search across
stores, reducing the extent of local monopoly power and decreasing prices.
Note that, consistent with the predictions of Lal and Rao (1997), the PROMO
strategy is hurt the least by consumer search, reflecting their view that this
“hi-lo” pricing strategy is explicitly aimed at “cherry pickers” and thereby
better able to mitigate the damage. There are three covariates that differ in
their impact on revenues across the strategies. The percentage of Hispanic
shoppers is associated with higher revenues for EDLP and HYBRID, but
lower revenues for PROMO. Larger chains tend to generate greater revenues
by choosing PROMO or HYBRID, rather than EDLP. Finally, the effect of
household size is not significant under EDLP or HYBRID, but is positive and
significant for PROMO.

Focusing on the strategic effects, we find that the revenues associated
with every strategy are decreasing in competition, consistent with standard
“business stealing” (congestion) arguments. Furthermore, the negative impact
is largest for the share of rival firms who choose the same strategy as the focal
firm, suggesting some scope for differentiation on the demand side. However,
as we will see later, this revenue differential is small compared to the relative
cost advantage of matching your rival’s choice of pricing format.

Because these revenue regressions are key to backing out the implied cost
differences, it is important to assess the robustness of our revenue specification
to alternative functional forms. Since our focus is on the nature of strategic
interaction, we introduce additional flexibility in the treatment of the remaining



18 P.B. Ellickson, S. Misra

controls and highlight the robustness of the strategic effects to these alterna-
tives. In particular, we implemented both a flexible semi-parametric model
based on splines and a factor analytic approach that incorporates a much
larger set of demographic variables (to control for the possible presence
of correlated unobservables). In the latter specification, 279 demographic
variables were factor analyzed to create thirty distinct factors that were then
used as composite market-level controls. Table 2 presents the results from
four specifications: a linear specification with no selection correction and
three alternatives that were selection corrected (our baseline linear model,
the semi-parametric spline specification, and the factor analytic approach).
A number of points are worth noting. First, the direction and magnitude
of the strategic effects are robust across the various specifications. Second,
ignoring the selectivity correction term seems to dampen the negative effect
of competitors employing the same strategy. Third, all strategic effects are
negative, suggesting that competitive effects are strong and verifying that the
differential effect of EDLP relative to PROMO (βE − βP) is negative across
specifications. Finally, the results from the specification with the composite
demographic factors exhibits similar strategic effects to the baseline model,
suggesting that our baseline specification is reasonably robust to correlated
unobservables.

3.2.3 Step 3: constructing counterfactual revenue dif ferences

Having obtained revenue estimates in step 2, step 3 simply involves con-
structing counterfactual revenue differences: the expected gain (or loss) from
choosing an alternative pricing strategy. The results of this exercise are pre-
sented in Fig. 2, which display histograms for EDLP and HYBRID (versus
PROMO) for the stores that actually chose each of these strategies. We see
that, amongst stores choosing EDLP, about a third would sustain a revenue
hit by switching to PROMO. However, the majority of the stores that choose
EDLP would actually stand to gain revenue by switching to PROMO, implying
that substantial cost saving must be working to offset the forgone revenue

Table 2 Strategic effects in revenue regression: robustness

Model EDLP HYBRID PROMO

ρE
−ilmj

ρP
−ilmj

ρE
−ilmj

ρP
−ilmj

ρE
−ilmj

ρP
−ilmj

No selectivity correction
Linear −0.0233 −0.0217 −0.0282 −0.0221 −0.0131 −0.0199

(0.0056) (0.0064) (0.0074) (0.0070) (0.0066) (0.0038)
Selectivity corrected models

Linear −0.0269 −0.0184 −0.0305 −0.0091 −0.0126 −0.0220
(0.0056) (0.0064) (0.0074) (0.0073) (0.0067) (0.0038)

Semiparametric −0.0329 −0.0159 −0.0319 −0.0069 −0.0108 −0.0181
(0.0055) (0.0063) (0.0073) (0.0072) (0.0064) (0.0034)

Factor analytic −0.0250 −0.0110 −0.0320 0.0022 −0.0080 −0.0177
(0.0059) (0.0064) (0.0077) (0.0073) (0.0066) (0.0037)
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Fig. 2 Counterfactual
revenue differences in $MM
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(a claim that we verify in the following section). Notably, the analogous data
for HYBRID stores are quite different: the vast majority of HYBRID stores
would actually lose revenue by switching to PROMO, indicating a more limited
role for cost savings. However, to recover the actual cost implications of
choosing HYBRID (and verify our claim regarding EDLP), we must turn to
the cost differences recovered in step 4.

3.2.4 Step 4: cost function estimates

The final step of our four step procedure involves comparing the counter-
factual revenue differences constructed in step 3 to the actual choices that
each store made in order to back out the cost differences that rationalize their
observed actions.

By examining the coefficient estimates, we can identify the covariates that
drive these cost differences. Note that the estimates presented in Table 3 are
directly comparable to those presented in the last two columns of Table 1, as
everything is now expressed in differences. Since this is a reduced form, the
demographic covariates are included as well, but don’t have a clear interpre-
tation. However, many firm characteristics enter as expected. For example,
vertical integration and larger chain size reduce the costs of EDLP relative to
PROMO, reflecting the firm level investments needed to profitably implement
EDLP (greater scale is needed to smooth out the fluctuations in demand).
Larger chain size also reduces the cost of HYBRID relative to PROMO, but
vertical integration is insignificantly different from zero. Greater store size
lowers the costs of PROMO relative to both alternatives, which may reflect the
fact that a wider selection (as proxied by selling area) undercuts the benefits of
smoothing demand (through a deeper, rather than wider, inventory). However,
the most interesting results are those involving strategic interaction. The large
negative coefficient on the share of EDLP rivals in the first column implies that
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Table 3 Cost estimates Variable EDLP HYBRID
Estimate Std. Err. Estimate Std. Err.

Intercept 1.1336 0.2962 −0.4636 0.2810
ρ̂E−i −2.3243 0.2489 0.0491 0.2484
ρ̂P−i 2.3454 0.2599 5.7880 0.2573
Vertical integration −0.2602 0.0782 0.0083 0.0690
Median rent 0.0001 0.0003 −0.0005 0.0003
Population density 0.0819 0.2771 −0.1870 0.2662
Store size 0.0217 0.0024 0.0030 0.0023
Chain size −0.0013 0.0001 −0.0010 0.0001
Proportion black −0.6212 0.1798 0.3406 0.1894
Proportion hispanic 0.4941 0.3602 −0.4670 0.3289
Median HH income 0.0038 0.0032 0.0043 0.0030
Median HH vehicles −0.0931 0.1452 0.2031 0.1419
Median HH size −0.2310 0.1060 −0.2644 0.1000

coordinating on EDLP actually reduces costs relative to PROMO. The same is
true for HYBRID. Moreover, the magnitudes of these effects are significantly
larger than what we found on the revenue side, indicating that the primary
reason firms coordinate on pricing strategies is to reduce costs. We turn next
to a broader discussion of these results.

3.3 Discussion

The empirical results from our estimation framework allow us to delve deeper
into the mechanics of pricing format decisions. In particular, we are better able
to grasp why and how stores choose amongst the various pricing strategies,
and put a dollar value on the relative trade-offs. We discuss some of these new
insights below.

Pricing Strategy Choice: With regard to pricing strategy, our findings reveal
that the decision to implement EDLP is primarily driven by cost-side factors.
We illustrate this point using a graphical analysis. Figure 3 plots both the
revenue and cost differences of EDLP versus PROMO for stores that actually

Fig. 3 EDLP versus PROMO
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Fig. 4 HYBRID versus
PROMO

chose EDLP. The hashed red line represents the locus of indifference points
where the revenue and cost differences coincide. Note that the region with
the highest density of observations is the lower left quadrant, to the right of
the red line. This implies that, relative to PROMO, most stores choose EDLP
to economize on costs. Specifically, for the typical store choosing EDLP over
PROMO, the amount they expected to gain in cost savings outweighed the
amount they expected to lose in revenues. In contrast, Fig. 4 reveals that the
decision to choose HYBRID (rather than PROMO) is driven by a combination
of both revenues and costs. The highest density region is now in the lower right
quadrant, implying dominance along both dimensions. Note that this does not
imply that HYBRID is always the preferred choice, but rather that in those
cases where HYBRID offers the highest overall payoff, it does so on account
of both revenue gains and costs savings.

Positive Strategic Interactions: By decomposing latent profits into revenue
and costs components, we are better able to understand how strategic inter-
actions influence the choice of pricing strategy. In earlier work, Ellickson and
Misra (2008) found that pricing strategies are strategic complements, implying
that firms tend to collocate in pricing strategy space. The results presented here
suggest that this tendency to collocate is not driven by demand-side factors.
In fact, the estimates of strategic interactions on the revenue side suggest
that revenues actually decrease when a firm is faced with a larger fraction of
competitors adopting their same strategy. In contrast, the cost estimates reveal
that total costs are decreasing in the share of rivals adopting the same pricing
strategy. This makes intuitive sense. Greater similarity to one’s rivals is likely
to drive down revenues, through a decrease in product differentiation and
increased competition. This provides an incentive to differentiate. However,
differentiation is costly. Firms have to convince consumers that their strategy
is superior to those of their rivals, primarily via increased advertising. Fur-
thermore, co-location might also reduce transaction costs when dealing with
common suppliers or manufacturers (this is presumably more important for
the smaller independent firms that do no vertically integrate into distribution).
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Table 4 Comparison of
strategies

Metric (mean) EDLP HYBRID

Cost savings (%) 5.75% 4.20%
Cost savings ($) 823,392 672,100
Revenues ($MM) 14.31 16.02
Revenue difference ($) (447,356) 953,447
Revenue difference (% of revenue) −3.13% 5.95%
Profit difference ($) 376,063 1,625,548
Profit difference (% of r evenue) 2.63% 10.15%

On net, the costs of differentiation outweigh the benefits when it comes to
pricing strategy.

Monetary Valuation of Strategies: An additional benefit of our estimation
approach is that we are able to scale latent profits in monetary units. To see
why we can do so, note that the counterfactual revenue functions are evaluated
in dollar terms and enter the discrete decision problem as an offset term. Since
the cost parameters are now evaluated relative to this revenue offset, they can
be interpreted on the same (dollar) metric. This allows us to monetize the costs
and benefits of strategy choices in a way that has hitherto been impossible.

To assess the relative dollar magnitude of the overall estimated effects, we
report the results of some simple calculations in Table 4. The table presents
average cost, revenue and profit differences for stores that choose EDLP or
HYBRID versus PROMO. In particular, choosing EDLP yields an average
cost savings of $823,392 over PROMO, which is about 5.75% of average
(store-level) revenues. However, this choice yields an average decrease in
revenue of $447,356. The net profit difference is $376,063, reflecting the
greater magnitude of the cost savings. In contrast, choosing HYBRID yields
substantial gains along both dimensions.

4 Concluding remarks

This paper provides a novel approach for incorporating information from
continuous outcomes into static discrete games of incomplete information.
We present a simple four step estimation algorithm, along with an empirical
application that illustrates a particular implementation and the type of novel
insight that can be gained from our approach. By incorporating revenue data
into the discrete game framework, we can more clearly understand the nature
of pricing decisions. In particular, we are able to distinguish between demand
and cost side explanations and frame the latent profit implications in monetary
terms. The methodology proposed here can be readily extended to incorporate
dynamics, as demonstrated by Ellickson et al. (2011).

This framework can easily be adapted to accommodate richer structure.
Our empirical application provides an example where only revenue data
is available, yielding an analysis that relies on reduced forms for revenues
and costs. In some cases, the reduced form may be of primary interest (for
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example, in determining the extent to which two distinct formats or channels
compete). In other cases, the deeper structural parameters may be required
(to perform counterfactuals, for example). With additional data on costs (or
profit margins), our framework provides a direct approach for recovering these
parameters, while controlling for selection. We hope that this paper facilitates
future research in this direction.

Appendix

The probability of firm i choosing action k can be described as a function of
state variables as follows (see Eq. 5 in the text):
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Recall as well that the revenue and cost equations are approximated as
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Define,
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If strategy k was chosen by firm i (we ignore the market subscript in what
follows) we know that
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In other words
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Recalling that ωR
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i (k), it is clear that
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Of course, given the independence of ε and η,

E
(
ωR

i (k) |εR
i (k) ≥ �π̃k

i +εC
i (k) , π i

) = E
(
εR

i (k) |εR
i (k) ≥ �π̃k

i + εC
i (k) , π i

)
.

(24)
Now, letting g

(
�π̃k

i |π i
)

denote the density of �π̃k
i , this expectation can be

written as
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

�π̃k
i +εC

i (k)

εR
i (k) f

(
εR

i (k) , �π̃k
i , εC

i (k) |π i
)

P
(
εR

i (k) ≥ �π̃k
i + εC

i (k) |π i
) dεR

i (k) d�π̃k
i dεC

i (k)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

�π̃k
i +εC

i (k)

εR
i (k) f

(
εR

i (k) , εC
i (k) |π i

)
g

(
�π̃k

i |π i
)

P
(
εR

i (k) ≥ �π̃k
i + εC

i (k) |π i
)

× dεR
i (k) d�π̃k

i dεC
i (k)

Since, by the i.i.d. assumption, εC
i (k) is independent of εR

i

(
k′) and εC

im

(
k′) ,

it is easy to see that this expectation will only be a function of profit indices,
π i = {

π1
i , π

2
i , ..., π

K
i

}
.

In other words,

E
(
ωR

i (k) |εR
i (k) ≥ �π̃k

i + �εk
i + εC

i (k) , π i
) = 	k (π i) (25)

where 	k is some unknown function. Given the one to one correspondence
between π i and Pi this can equivalently be expressed as,

E
(
ωR

i (k) |εR
i (k) ≥ �π̃k

i + �εk
i + εC

i (k) , π i
) = 	k (Pi)

where we have abused notation slightly in using 	(·) to represent both
functions. The selectivity corrected regression can then be run as

Rk
i

(
s, a; θk

R

) = R
(
s, a; θk

R

) + 	k
(
P̂i

) + ω̃R
i (k) (26)

where 	k (z) is a function of the vector z, and P̂i is a consistent estimator of Pi

and ω̃R
i (k) is a homoskedastic, mean zero error term. In practice the function

	k can be approximated by standard methods (polynomial series, splines, etc.)
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