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1. Introduction
Marketing is about understanding, predicting, and
influencing the behavior of consumers and firms.
Each faces many interrelated decisions. Individual
consumers decide what brands to purchase, how
much to buy, where to make their purchases, and with
whom to enjoy them. Firms choose which products
to offer and what prices to charge, how to position
and promote their brands, whom to hire and how
to compensate them, and how much to invest in the
continued growth of their enterprise. Most of these
decisions involve strategic interactions: neither firms
nor consumers act in a vacuum. Consumers may
care about what their family and peers think of their
choices, who else has purchased the product before
them, whether it has received favorable reviews, the
reputation of the seller, and whether complementary
products are or will become available. Firms must
consider the strategic reactions of the other players
as well. Will a price increase be matched? Will con-
sumers remain loyal to its products? How will its
salespeople respond to incentives? Can a rival sim-
ply copy its business model? The answers all involve
strategic decisions.

The interrelated nature of these decisions suggests
modeling them as strategic games. The precise struc-
ture of the game will clearly depend on the particu-
lar application. The game might be static or dynamic,
involve decisions (control variables) that are dis-
crete or continuous (or mixed), and information set-
tings that are complete or incomplete. By estimating

the structural parameters that govern these games,
we can recover valuable information about the par-
ticipants’ payoffs (and costs) and make predictions
concerning outcomes that are not observed in the
data. Our focus here is on a particular subclass of
strategic interactions: static discrete games. The pur-
pose of this paper is to summarize the current state
of the art in analyzing these games, highlight the
relevant trade-offs between alternative approaches,
and identify areas that are ripe for further explo-
ration. This is a decidedly applied piece, aimed at
explaining how to estimate games as well as why they
should be utilized. To ease the transition from learn-
ing to doing, we illustrate the nuts and bolts of esti-
mation with a real-world example: an entry game
between Walmart and Kmart. Using data on their
actual choices, we construct estimators illustrating
several canonical methods and provide documented
computer code with which to replicate our results.

We have chosen to focus on a narrow slice of
the empirical games literature—namely, static discrete
games. Although the relevant decision variables are
often continuous (e.g., prices, advertising), our focus
on discrete actions is driven by three considerations.
First, the empirical structure of discrete games is par-
ticularly complex, as it naturally involves decision
rules that take the form of inequalities as opposed to
first-order conditions. Thus, discrete games require a
unique set of econometric tools. Second, many strate-
gic decisions are naturally discrete (e.g., entry) and
provide the only avenue by which to identify certain
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critical constructs (e.g., fixed costs). Third, the avail-
able data characterizing outcomes are often discrete,
and it is useful to understand what we can and cannot
learn from discrete choice data alone. Later, we will
briefly consider what can be accomplished with richer
data structures. Finally, our decision to focus on static
games simply reflects the constraints of space and the
desire to target an audience that is new to the study
of games and is looking for a reasonable jumping-off
point.

Our analysis follows the time line of the literature,
beginning with static games of complete informa-
tion, and the pioneering work of Bresnahan and Reiss
(1990, 1991) and Berry (1992). We first discuss the
specific econometric problems that arise in games (of
either information structure)—namely, that the inter-
dependent nature of the underlying decision prob-
lems gives rise to multiple equilibria. This leads to
a coherency problem in which the mapping from
parameters to outcomes is nonunique, substantially
complicating estimation. We discuss the four leading
solutions to the coherency problem in detail, along
with specific examples of each that are drawn from
the extant literature. We conclude this first section
with a working example implementing two canonical
estimators on a real-world data set.

Next, we turn to games of incomplete informa-
tion, describing first how the information structure
impacts both the equilibrium concept and the method
of solution. We then introduce the various methods of
estimation, once again highlighting the role of multi-
plicity and its implications for correctly specifying the
empirical model. We discuss several empirical exam-
ples from the literature and conclude by revisiting our
working example under the alternative assumption of
incomplete information. Finally, we conclude with a
discussion of extensions to the basic empirical frame-
works and directions for future research.

The rest of this paper is organized as follows. Sec-
tion 2 provides a general introduction to empiri-
cal games, highlighting the various information and
timing assumptions, and introduces our working
example. Section 3 examines games of complete
information. We discuss the primary methods of
estimation, provide concrete examples from the litera-
ture, and illustrate implementation using our working
data set. Section 4 considers incomplete information
games. We highlight the various estimation methods,
review applications from the literature, and return to
our working example to illustrate the mechanics. Sec-
tion 5 considers extensions to the baseline models and
directions for future research. Section 6 concludes.

2. A Taxonomy of Discrete Games
Discrete games concern choices made from a finite
set of alternatives, where the payoffs from making
each choice depend on the decisions of other players.

That is, they are discrete choice models with strate-
gic interactions. The canonical example is entry into a
market, but other applications have included the tim-
ing of radio commercials, a supermarket’s choice of
pricing strategy, an ice cream manufacturer’s choice
of flavors, and an individual’s decision to join a
group. Researchers sometimes have access to richer
data (beyond a discrete choice of action) such as price,
quantity, or cost information, but most applications
to date have focused on pure discrete choice data
and employed a latent payoff structure, relying on
revealed preference arguments to motivate the analy-
sis. We will consider richer data structures later, but
for now we will assume that all choices are discrete
and payoffs purely latent.

A critical consideration when formulating a dis-
crete game involves specifying each player’s infor-
mation set and relevant time horizon (as well as
what the researcher observes and does not observe).
With regard to the players’ information sets, there
are two main approaches: complete information and
incomplete information. Under the complete infor-
mation setting, the researcher assumes that the play-
ers observe everything about each other’s payoffs
(including any covariates that are unobserved by the
researcher) and therefore face no uncertainty regard-
ing the payoffs of their rivals. The relevant equilib-
rium concept is Nash equilibrium, and the standard
approach is to focus on pure strategies.1 Under the
incomplete information setting, the players are uncer-
tain about the payoffs and actions of their rivals. They
form expectations over their rivals’ actions and max-
imize expected profits. The relevant equilibrium con-
cept is then Bayesian Nash equilibrium, and standard
purification arguments imply that we need only focus
on pure strategy equilibria.2

Turning to the players’ relevant time horizon, there
are again two main alternatives: assume they are play-
ing a one-shot, static game or formulate an infinite-
horizon dynamic game.3 For the purposes of this
paper, we will focus exclusively on the static, simul-
taneous move setting, referring the reader to excellent
surveys by Ackerberg et al. (2005) and Aguirregabiria
and Mira (2010) for various approaches for estimating
dynamic games. However, we note here that many of

1 Mixed strategies are straightforward to handle in principle but
raise considerable complications in practice (e.g., they are difficult
to solve for).
2 Mixed strategies are typically introduced to alleviate concerns
over the existence of equilbrium. However, as noted by Harsanyi
(1973), the crucial issue for existence is introducing uncertainty over
rival choices. This uncertainty arises naturally with the presence of
incomplete information.
3 Note that these two “alternatives” are simply what has been done
(at least in the bulk of the literature) and what could be done (alter-
nating moves, repeated games, etc.).
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the issues that arise in the estimation of static games
(e.g., multiplicity of equilibria, coherency problems,
computational complexity) occur in the dynamic set-
ting as well and that several approaches to estimation
(e.g., nested fixed-point estimation, two-step meth-
ods) can be applied in either context. Indeed, the main
methods for estimating static games of incomplete
information were imported from the dynamic games
literature.

2.1. Walmart and Kmart Entry Game:
A Working Example

To illustrate the various assumptions, modeling alter-
natives, and estimation methods available for static
games, we will focus on a single, “real-world”
research example: an entry game between Walmart
and Kmart discount stores. To set the stage, suppose
that Kmart and Walmart compete in a collection of
well-defined local markets (e.g., rural villages, small
towns). Because we are focusing on small, rural mar-
kets, we will ignore the existence of Target, which
mainly serves more urban locations. Although Wal-
mart and Kmart stores were actually sited over a 40-
or 50-year period, we will assume that their strate-
gic choice of locations can be well approximated by a
static discrete game.

We will draw on a data set collected by Panle
Jia for her empirical analysis of the discount retail
industry (the data set is publicly available on the
Econometrica website and described in detail in Jia
2008). We consider a (much) simplified version of her
model, in which the two chains make independent
entry decisions across a collection of local markets.4

In addition, we (like her) consider only markets in
which each firm operates at most one store. Taking
a local market to be a county, this leaves 2,065 rel-
atively small and isolated markets, assumed to be
independent replications of this simple 2 × 2 discrete
game (two firms choosing either “enter” or “don’t
enter”). We will consider each information setting
(complete and incomplete) in turn, focusing on com-
plete information first. We will then use this data
set to illustrate several specific estimation routines.
The code and associated documentation are avail-
able at http://www.simon.rochester.edu/fac/misra/
software.htm.

3. Complete Information Approach
The estimation of discrete games relies on the same
revealed preference logic as discrete choice: the choice
the firm actually made must have yielded higher prof-
its (or expected profits) than the alternatives that it

4 Assuming that firms make independent decisions across markets
is clearly counterfactual for a chain of stores, but relaxing this
assumption introduces a complex network structure to the choice
problem. This network game is the focus of Jia’s paper (2008) and
an issue we will return to later.

did not choose, conditional on the equilibrium choices
of its rivals. The inclusion of rival choices as condi-
tioning arguments in the players’ payoff functions is
what distinguishes discrete games from single-agent
discrete choice problems, introducing econometric
complications that we will tackle shortly. Structural
models of these strategic discrete choices provide
insight into the drivers of profitability, both observed
and unobserved. We follow the bulk of the litera-
ture in treating the payoffs on which firms base their
decisions as latent. The choice of functional form for
these latent payoffs is clearly important, having direct
implications for both tractability and the interpreta-
tion of results.

There are two main alternatives when choosing a
functional form for payoffs: derive it from partic-
ular assumptions on the economic primitives (e.g.,
demand and cost, as well as the structure of the
postentry game) or choose a parameterization that
is analytically convenient yet flexible enough to cap-
ture the patterns observed in the data. The for-
mer is clearly theoretically cleaner (all the parame-
ters will have a clear structural interpretation), but it
can quickly become unwieldy, rendering estimation
intractable. Moreover, absent data on prices and quan-
tities, the identification of more primitive demand and
cost structures will clearly be driven by functional
form. As such, the latter approach has become the de
facto standard since Berry (1992). However, this more
“reduced-form” approach does place limitations on
the causal interpretation of coefficients and the scope
for determining counterfactuals.5

Following the structure of Berry (1992), but employ-
ing the notation of Ciliberto and Tamer (2009), let the
profit function of firm i = 8K1W9 in local market m
be given by �im4�3y−im5, where yim is the action (enter
or do not enter) of firm i, y−im is the action of its
rivals (just one rival firm in our working example),
and � is a finite-dimensional parameter vector. The
function �im will typically contain covariates specific
to both the market and the firms (e.g., population and
the distance to the nearest distribution center). In par-
ticular, let Xm be a vector of market characteristics
common to both firms, and let Zm = 4ZKm1ZWm5 repre-
sent firm characteristics that enter only into the focal
firm’s profit function (e.g., cost variables) and do not
(directly) impact the profits of its rivals (other than
through their impact on these rivals’ entry decisions).
In general, we might also consider firm characteris-
tics that enter rival firms profit functions as well (e.g.,
quality), but we will focus on a more parsimonious
setting here. Let the profit function of firm i in mar-
ket m be given by

�im = �′

iXm +�′

iZim + �iy−im + �im1 (1)

5 See Berry and Reiss (2007) for further discussion of the relevant
trade-offs.
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where �im is a component of profits that is unob-
servable to the econometrician. Thus, expected prof-
its (net of �im) are a function of only the common
market characteristics, the firm’s own characteristics,
and its rival’s chosen action. The assumption that
the �s are perfectly observed by both players makes
this a game of complete information. Assuming that
the firms make choices simultaneously, the complete
information Nash equilibrium can be characterized by
the following system of inequalities:

yKm = 16�′
KXm +�′

KZKm + �KyWm + �Km ≥ 071

yWm = 16�′
WXm +�′

WZWm + �WyKm + �Wm ≥ 071
(2)

which, in this case, represents the nonnegative profit
conditions for Kmart and Walmart, respectively. An
equilibrium is simply a configuration that satisfies
both equations. Note that these outcome equations
constitute a binary simultaneous equation system.
The presence of a rival’s choice variables on the right-
hand side of each firm’s profit function are what
distinguishes discrete games from discrete choice
problems. This interdependent structure raises prob-
lems for estimation and identification that we dis-
cuss next.

In particular, if the �s have full support, it is
straightforward to establish the existence of multiple
equilibria. Put simply, this implies that for a given set
of parameters, there may be more than one possible
vector of equilibrium outcomes 4y50 For example, if
the �s are assumed to be negative (facing competi-
tion reduces one’s profits), multiple equilibria arise in
the region of � space for which −4�′

iX + �′
iZi5 ≤ �i ≤

−4�′
iX + �′

iZi5 − �3−i for i = 1120 Intuitively, this rep-
resents the settings in which a local market can only
“fit” one firm, and neither firm’s monopoly profits
are large enough to preempt entry by the other (e.g.,
each firm’s monopoly profits are only slightly greater
than 0, so neither one wants to be there if the other
one is).6 As mentioned earlier, the same set of param-
eters (and covariates) is consistent with more than one
outcome. This “incompleteness” raises a problem for
inference known as coherency (Heckman 1978, Tamer
2003). From a practical standpoint, in the simple 2×2
game considered above, the likelihood for the indi-
vidual firm’s choice probabilities will sum to more
than 1, violating the law of total probability.

To date, there are four main approaches to
“solving” the coherency problems raised by the mul-
tiplicity of equilibria: aggregate to a different set of

6 For an elegant graphic illustration of this case, see either
Bresnahan and Reiss (1991) or Ciliberto and Tamer (2009). Note
that a similar result is obtained when the �s are positive (i.e., entry
is beneficial, as in a coordination game or peer-effects model); only
now, in the region of nonuniqueness, either both players will enter
or both will stay out.

predictions that are robust to multiplicity (e.g., the
number of entrants), place restrictions on the model
that guarantee a unique prediction (e.g., sequential
moves), specify an equilibrium selection rule (e.g., the
equilibrium maximizes joint profits), or embrace the
ambiguity and adopt a bounds approach.7 We will
consider each strategy in detail and then turn to the
mechanics of estimation.

The strategy of aggregating up to a robust pre-
diction was first proposed by Bresnahan and Reiss
(1991), who developed a general framework for esti-
mating discrete games and social interaction mod-
els. The core idea can be illustrated using the 2 × 2
Walmart/Kmart entry game. Note that in the region
of � space in which multiple equilibria arise, the
multiplicity is in the identity rather than the number
of entrants. In particular, either Walmart or Kmart
can profitably enter the market, but not both. There
will be one entrant in equilibrium, but the model
does not specify which it will be. Therefore, rather
than specifying an econometric model that predicts
which firms will enter, we instead construct a model
of how many firms will enter. Given certain restric-
tions on the payoff functions (mainly restricting the
degree of heterogeneity in payoffs), this strategy can
be extended beyond the simple 2 × 2 setting and like-
lihood functions written down that characterize the
equilibrium number of entrants rather than the par-
ticular choices of individual players (Bresnahan and
Reiss 1991, Berry 1992, Mazzeo 2002b). However, with
sufficient amounts of firm heterogeneity, it can be
difficult to guarantee uniqueness in the number of
entrants (or even the existence of pure-strategy equi-
libria). Therefore, it is necessary to consider alterna-
tive approaches.

The second approach to completing the model
involves changing the timing element of the model
so that players move sequentially, rather than simul-
taneously. This sequential-move structure guarantees
a unique equilibrium. In particular, when the param-
eters of the model fall in the region yielding the
formerly ambiguous predictions, the “first mover”
will preempt the follower, restoring coherency and
allowing the likelihood to once again total one. This
approach is employed by Berry (1992), where the
operative assumption is that the most profitable firms
enter first. This has the added benefit of mitigating the
inefficient entry that might occur by simply assum-
ing that Kmart always moves first, for example. Note
that this approach can complicate estimation some-
what as the regions of integration—the partitions of

7 Note that even if one is able to “solve” the coherency problem
and obtain consistent parameter estimates, multiplicity of equilib-
ria may continue to raise difficulties at the counterfactual stage.
For example, the selection rule that characterized the data may no
longer be valid under the counterfactual.
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� space that yield each unique prediction—may have
irregular shapes (i.e., be nonrectangular). Berry (1992)
addressed this problem via simulation, which we will
illustrate in detail below.

Clearly, sequential entry can be viewed as a form
of equilibrium selection, albeit one that the researcher
imposes. An alternative approach to completing the
empirical model is to specify a more general selec-
tion rule that is a function of covariates (and per-
haps unobservables). This approach was originally
proposed by Bjorn and Vuong (1985) and further
explored by Tamer (2003) and Bajari et al. (2010), all
in the context of complete information games. In the
simplest version, this could involve assigning proba-
bilities � and 1 − � to the two monopoly outcomes
in the region of nonuniqueness and estimating this
additional parameter (�) as part of an overall likeli-
hood function. Note that the overall likelihood will
now be a mixture. More generally, these probabili-
ties might be allowed to depend on covariates (and
perhaps the unobservables), leading to more complex
mixture models. Alternatively, in Bajari et al. (2010),
the equilibrium selection probabilities depend on the
property of the equilibrium itself (that it is joint profit
maximizing, for example).

The fourth solution to the multiplicity problem is to
embrace the incompleteness and switch to a bounds
approach (Tamer 2003, Ciliberto and Tamer 2009,
Pakes et al. 2005). Under this approach, the selec-
tion rule is viewed as an infinite-dimensional nui-
sance parameter—an unknown function of unknown
covariates. Rather than specifying a particular selec-
tion rule, the researcher seeks instead to identify
parameters that are consistent with at least one such
rule. Although it may still be possible to achieve
point identification using “identification at infinity”
arguments (Ciliberto and Tamer 2009), these mod-
els will generally be set-identified. Establishing valid
(and tractable) methods of inference for set identi-
fied models is an active area of current econometric
research.

3.1. Unobserved Heterogeneity
In any empirical model, it is important to control
for unobserved heterogeneity: features of the mar-
ket or market participants that are unobserved to the
researcher. In the context of entry games, an obvi-
ous example is the level of intrinsic demand, which is
often poorly proxied by observables such as popula-
tion and income. Some markets are simply better loca-
tions, because they are closer to shopping districts,
highway interchanges, or other local amenities. Many
of these features will be difficult to capture with avail-
able covariates, forcing the researcher to deal with
them econometrically.

The primary approaches to estimating static games
of complete information involve a “full-solution”

approach whereby, for a given guess of the relevant
parameter vector, the game is first solved (for either
the equilibrium number of entrants or individual
choice probabilities, conditional on a particular selec-
tion mechanism) and then its predictions matched to
what is observed in the data. This is essentially a full-
information approach, allowing estimation to proceed
via either maximum likelihood (MLE) or the gener-
alized method of moments (GMM), perhaps employ-
ing simulation methods to reduce the computational
burden of computing various high-dimensional inte-
grals. Either way, it is relatively straightforward to
include a rich structure of unobserved heterogene-
ity (e.g., market-level random effects, random coef-
ficients), provided that its inclusion does not violate
the conditions necessary for completing the model
(e.g., uniqueness of the equilibrium or the number
of entrants). Furthermore, as long as the full data-
generating process can be specified parametrically,
Bayesian inference is feasible as well, providing an
attractive avenue for including heterogeneity at rela-
tively low computational cost. The further exploration
of a Bayesian approach to games estimation is a fertile
area for future research.

3.2. Examples from the Literature/Extensions
Complete information models have been employed
extensively in both the economics and marketing lit-
eratures, starting with the seminal work of Bresnahan
and Reiss (1991) and Berry (1992). Mazzeo (2002b)
extended the Bresnahan and Reiss (1991) approach to
include a discrete choice of product quality, in addi-
tion to a binary entry decision. His application was to
motels located along interstate highways. Consistent
with standard predictions from oligopoly theory, he
found that competition was strongest among the clos-
est types. Cleeren et al. (2010) used this approach to
study intra- and interformat competition among dis-
counters and supermarkets. Zhu et al. (2009) adapted
Mazzeo’s framework to analyze entry and format
choice in the discount retail store industry, using the
selection correction techniques developed in Mazzeo
(2002a) to include additional information on store-
level revenue. Singh and Zhu (2008) examined the
impact of market structure on posted prices in airport
rental car markets using a similar framework.

Hartmann (2010) developed a complete information
framework for incorporating social interactions into
marketing mix decisions. Clearly, within-group inter-
action should influence optimal targeting. His appli-
cation is an individual golfer’s discrete decision over
whether to play a given round of golf alone or to
join a foursome. He also incorporated individual-level
heterogeneity through a hierarchical Bayesian Markov
chain Monte Carlo (MCMC) approach. Shriver (2010)
extended the Bresnahan and Reiss (1991) framework



Ellickson and Misra: Estimating Discrete Games
1002 Marketing Science 30(6), pp. 997–1010, © 2011 INFORMS

to accommodate an endogenously determined market
size in his model of indirect network effects in alter-
native fuel adoption. Ciliberto and Tamer (2009) used
a bounds approach to examine airline entry decisions.

In the context of store locations, Jia (2008) relaxed
the assumption of independence across markets by
tackling the store network choice directly, exploiting
a lattice structure that arises in the two-player model.
She was able to quantify the relative importance of
network economies as well as the impact of Wal-
mart on small firms. However, her approach is only
able to accommodate two firms (Walmart and Kmart)
that each operate only one store per market. Ellickson
et al. (2010) used a profit inequalities approach sim-
ilar to Pakes et al. (2005) to accommodate multiple
firms, an arbitrary number of stores per location, and
a location-specific unobservable. They applied their
framework to competition among Walmart, Kmart,
and Target, and they highlighted the importance of
controlling for unobserved heterogeneity.

3.3. Implementation
To illustrate the complete information approach to
static games, we will implement two of the strategies
discussed above: aggregating up to a unique predic-
tion and specifying a particular selection rule (based
on the order of entry). The first approach is based on
Bresnahan and Reiss (1991), and the second follows
Berry (1992).

Model 1 (Bresnahan and Reiss 1991): We assume that
firms are exchangeable, and profits depend only on
market-level factors:

�im = �′Xm − �y−im + �im0 (3)

In our application, the market-level matrix Xm

includes three covariates: “Population,” “Retail sales
per capita,” and a dummy for “Urban” markets.8 We
will assume throughout that the �ims are indepen-
dent and identically distributed (i.i.d.) standard nor-
mal deviates.9 Given this structure, the likelihood of
observing nm firms in a given market m can be com-
puted in closed form. For example, the probability of
seeing a duopoly is simply

Pr4nm = 25=
∏

i

Pr4�′Xm − �y−im + �im ≥ 050 (4)

The sample log-likelihood is then

lnL=

M
∑

m=1

2
∑

l=0

14nm = l5 ln Pr4nm = l50 (5)

8 For a detailed discussion of the industry, market definition, and
the relevant covariates, see Jia (2008).
9 As noted earlier, the complete information approach can easily
accommodate both correlated errors and unobserved heterogeneity.
However, for expositional simplicity and ease of comparison (to the
incomplete information examples), we restrict our attention to the
i.i.d. setting.

Table 1 Estimation Results from Complete Information Games

Bresnahan
and Reiss Berry Berry Berry

Variable (Homogeneous) (Profit) (Walmart) (Kmart)

Common effects
Population 1032∗ 1069 1067 1069
Retail sales per capita 1013 1054 1052 1054
Urban 1003 1020 1019 1020
� 0065 0039 0040 0038

Walmart-specific effects
Intercept (Walmart) −14003a −11087 −11076 −11090
Distance to Bentonville, AK −1007 −1006 −1007
South 0072 0072 0071

Kmart-specific effects
Intercept (Kmart) −14003a −19076 −19056 −19057
Midwest 0037 0037 0037

aIntercepts are common across both firms in this specification.
∗All coefficients are significant at the 5% level.

Estimation is carried out using full-information
maximum likelihood (FIML). The results for all com-
plete information games are presented in Table 1. We
defer a discussion of the results until after we have
introduced the remaining models.

Models 2–4 (Berry): We implement three versions
of Berry’s estimation framework, which also accounts
for observed heterogeneity across players. The key
distinction between these three cases is the way they
resolve the multiplicity problem. The first version
(Model 2) follows Berry (1992) in ordering entry by
profitability. That is, the most profitable player moves
first. The estimation algorithm, proposed by Berry
(1992), involves simulating �s to construct profits
(from (1)) and then using these realizations to con-
struct the profit realizations that order the moves. The
second version (Model 3) gives Walmart the option to
enter first (independent of profits), whereas the third
version (Model 4) awards Kmart this right.

Note that, given a particular order of entry, the
number of firms in the market is uniquely deter-
mined. Because we know each firm’s profitability (for
a given �), we also have a unique prediction of who
will be in and out of the market. This information can
then be used to construct an estimator. In our imple-
mentation, we follow the approach described in the
appendix to Berry (1992). We construct the probabili-
ties that Walmart and Kmart will each enter the mar-
ket by integrating over indicator functions describing
entry as a function of computed profits and the equi-
librium number of firms for each simulation. These
probabilities can then be used to construct moment
conditions that define a GMM-type objective function
or formulate a likelihood. In our implementation we
adopt the latter strategy. We would like to caution the
reader that formulating a likelihood for such games
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with more than two players or with added hetero-
geneity is not trivial. In such cases one would typ-
ically have to adopt a GMM approach and face a
choice of what moments to include.

3.3.1. Discussion of Results. The results for Mod-
els 1–4 are presented in Table 1. All parameter esti-
mates are significant at the 5% level, with signs that
are consistent both with intuition and with previous
results based on the same data (Jia 2008). Because the
purpose of this empirical exercise is to demonstrate
the different methodologies, we will not dwell on
the substantive aspects of the results here. Rather, we
focus the reader’s attention on the differences in the
parameter estimates across the models. First, a warn-
ing: The results cannot be directly compared across
the two sets of models (Bresnahan and Reiss versus
Berry) because of the usual concerns about scaling,
specification, and assumptions. However, a compar-
ison across the three Berry models is fair, and we
restrict our attention to these.

At first blush, the results may seem “surprising” in
that the parameter estimates are essentially identical
across the three equilibrium selection rules: the par-
ticular rule does not seem to matter here. We note
that Jia (2008) finds a similar robustness to the order
of moves in her analysis. To help explain why these
results are obtained, we remind the reader that this
industry (at least for these data and this time period)
has very asymmetric players. In particular, Walmart
is quite a dominant player, whereas Kmart is rela-
tively weak. The table below outlines this asymmetry
in stark fashion.

Kmart not in Kmart in
market market

Walmart not in market 11004 90
Walmart in market 711 260

Note that in only 4.35% of all markets does Kmart
enjoy a local monopoly. Now consider how the
assumed sequence of moves might affect the esti-
mates. If we assume that Walmart has the right to
move first, the model must rationalize the fact that
Walmart enters about half the markets, while Kmart
enters much fewer. It does so by making Walmart
relatively more profitable, choosing the intercepts
and covariates (especially the exclusions) such that
Walmart has a relative advantage. It should then come
as no surprise that changing the rule to allow the most
profitable firm to move first changes very little: the
model continues to imply that Walmart is the more
profitable player. Now consider the case where Kmart
moves first. The model can use similar parameters to
rationalize the data, because Kmart ends up acquiesc-
ing the vast majority of the markets to Walmart. In

other words, Kmart does not enter “monopoly” mar-
kets because it expects the more profitable Walmart
to do so. Because these markets can only sustain one
player, Kmart does not enter. Again, to generate the
patterns in the data, it suffices to make Walmart dom-
inant, as in the other cases.

We would like to be clear that this is not a gen-
eral result but rather is contingent on the particular
data at hand. Other applications and industries will
have varying number of players with different power
structures, and the equilibrium selection rule may
indeed come to have some “bite.” It is also impor-
tant to note that the choice of the payoff specifica-
tion is key. If, for example, we allowed the players
to have different coefficients across the board (partic-
ularly �), the sequence of moves would have a sig-
nificant impact on estimates. In general, modelling
assumptions in discrete games (especially those per-
taining to equilibria) are not trivial and can have an
important influence on parameter estimates. This is
part of the motivation for the bounds approach.

4. Incomplete Information Approach
Beginning with Rust (1994), the literature has empha-
sized static games of incomplete information. Under
the incomplete information approach, payoffs are no
longer assumed to be common knowledge: players
form beliefs over rivals’ actions. Although uncertainty
can be introduced in a number of ways, the easi-
est way to model incomplete information is through
the �s, the additively separable components of pay-
offs that are unobserved to the researcher. In par-
ticular, suppose we now assume that each player
observes his own �i but only knows the distribu-
tion of �j for his rivals, which we denote F 4�j5.
Suppose that the researcher also knows this distribu-
tion but does not observe individual draws for any
player. Note that this puts the firms on equal footing
with the researcher regarding the beliefs over their
rivals’ actions, a symmetry that will prove very use-
ful when constructing an estimator. Each firm now
forms expectations about its rivals’ behavior, choos-
ing the action that maximizes expected profits given
those beliefs. This yields the following system of
inequalities:

yKm = 16�′
KXm +�′

KZKm + �KpW + �Km ≥ 071

yWm = 16�′
WXm +�′

WZWm + �WpK + �Wm ≥ 071
(6)

in which the probability pi ≡ Ei4y−i5 represents firm
i’s beliefs regarding its rival’s actions. The conditional
choice probabilities implied by these decision rules
can then be used to represent each firm’s strategy. The
Bayesian Nash equilibrium (BNE) of the game can be
characterized by the following set of equalities:

pK =ëK4�
′
KXm +�′

KZKm + �KpW 51

pW =ëW 4�′
WXm +�′

WZKm + �WpK51
(7)
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where the exact form of ë will depend on the
distribution F 0 The functions ë are best-response
probability functions, mapping expected profits (con-
ditional on beliefs p) into (ex ante) choice probabil-
ities.10 If F is an absolutely continuous distribution,
this system (pair, in this case) of nonlinear equa-
tions is guaranteed to have a solution by Brouwer’s
fixed-point theorem. Moreover, this fixed-point rep-
resentation provides a direct method of solving for
equilibria: the method of successive approximations
(i.e., fixed-point iteration). Thus, one possible estima-
tion strategy (originally proposed by Rust 1994) is
another full-solution approach that first solves this
system of equations (for a given set of parameters)
and then matches the predicted conditional choice
probabilities to the choices observed in the data. This
is essentially a static games version of Rust’s nested
fixed-point (NFXP) algorithm (Rust 1987). If the �s
are assumed to be drawn from the Type 1 extreme
value distribution, the likelihood function will take
the familiar conditional logit form. This is the method
employed by Seim (2006) in her empirical study of
entry and store location decisions in the video rental
industry (though she uses a nested logit structure to
distinguish entry from location choice).

A now familiar complication is that the system
of Equation (7) may admit more than one solution:
the underlying game may have multiple equilibria.11

Thus, games of incomplete information suffer from
the same coherency problems as complete informa-
tion games. Once again, there are several possi-
ble methods of completing the empirical model. We
will first review the four approaches discussed ear-
lier and then introduce two additional options that
specifically exploit the structure of incomplete infor-
mation games.

As with games of complete information, one strat-
egy is to identify a prediction of the model that is
robust to multiplicity. Because this approach becomes
quite difficult in the presence of heterogeneity, it has
not been pursued in the existing literature. The sec-
ond option is to change the timing of the game
from simultaneous to sequential moves. In his anal-
ysis of movie release dates, Einav (2010) employed a
sequential structure and provided a clever method for
“integrating out” over alternative move sequences.

10 In the incomplete information setting, strategies can be repre-
sented as either discrete actions or ex ante choice probabilities. The
modifier “ex ante” refers to the fact that these probabilities consti-
tute the firm’s expected actions prior to the realization of �.
11 In some examples, incomplete information has been shown to
reduce the incidence of multiple equilibria relative to a complete
information counterpart. However, it does not eliminate the prob-
lem in general (see Berry and Reiss 2007 for a numerical exam-
ple), implying that additional structure will still be needed to close
the model.

The third option is to specify an explicit equilib-
rium selection mechanism in the spirit of Bjorn and
Vuong (1985). This approach was developed further
by Sweeting (2009) in his study of the timing of
radio commercials. In his empirical model, Sweeting
first considered cases in which the selection probabil-
ities are fixed parameters; he then considered a richer
specification in which they depend on covariates. He
also demonstrated that multiplicity of equilibria in
the data can actually aid identification by changing
the implied dispersion of choice probabilities. Misra
(2008) proposed a Bayesian approach to estimation
that uses MCMC to sample from the posterior dis-
tribution of the structural parameters, eliminating the
need to search for all the fixed points.

Finally, if the researcher is unwilling to impose an
explicit selection rule, a bounds approach may be fea-
sible here as well. Because the moment inequalities
approach developed by Pakes et al. (2005) is robust to
alternative assumptions on the players’ information
sets, it can be applied to games of either complete or
incomplete information. Grieco (2010) developed an
alternative framework that is also able to nest both
information assumptions, along with an econometric
test that can distinguish between the two.

The first four approaches to completing the empir-
ical model are familiar from our discussion of com-
plete information. However, the specific structure
of incomplete information offers some additional
options for completing the empirical model. The first,
which draws on methods originally introduced by
Hotz and Miller (1993) in the dynamic discrete choice
literature, involves substituting first-stage estimates
(p̂i) of the (reduced-form) choice probabilities into
the right-hand side of Equation (7). Note that this
eliminates the need to solve the fixed-point prob-
lem when evaluating the corresponding (pseudo)
likelihood function that is implied by these struc-
tural choice probabilities.12 Closely related “two-step”
methods have proven very effective in estimating
dynamic discrete games where, in addition to the
problems raised by multiplicity, there is also a mas-
sive computational burden induced by the curse of
dimensionality inherent in many dynamic decision
problems.13 In the case of static games, the primary
benefit of the two-step approach lies in its rela-
tive robustness to multiplicity. Provided that only

12 Note that GMM or least squares-based estimation can be used
here as well. See Bajari et al. (2010) for further details, as well as
for formal results on identification.
13 As noted earlier, we have chosen to focus only on static dis-
crete games. See Aguirregabiria and Mira (2007), Bajari et al. (2007),
Pakes et al. (2007), and Pesendorfer and Schmidt-Dengler (2008)
for the seminal papers applying two-step estimation techniques to
games. Arcidiacono and Ellickson (2011) provide a broad overview
of two-step approaches to dynamic decision problems.
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one equilibrium is played in the data, this approach
solves the coherency problem, because the estimator
is effectively able to condition on the equilibrium that
was played in the data. This clearly relies on the con-
dition that only one equilibrium was in fact played
in the data. This is more likely to hold in settings in
which the same set of firms competes over time in
the same market versus settings where they compete
in different markets (i.e., panel versus cross section).14

With panel data, it may be possible to estimate the
model market by market, allowing for the possibility
that different equilibria are played in different mar-
kets (Ellickson and Misra 2008), thereby weakening
the “one equilibrium” assumption.

Two-step methods do have some drawbacks rela-
tive to the full-solution approaches discussed above.
First, because they are inherently limited informa-
tion techniques, they are less efficient than FIML
approaches like Rust’s NFXP estimator. Second, the
consistency of the second-stage estimates relies on
obtaining consistent first-stage estimates of the con-
ditional choice probabilities (CCPs). Because these
are reduced-form objects, they should ideally be esti-
mated nonparametrically. This is because even if the
functional form of both the profit functions (1) and
best-response probability functions (7) are known,
the reduced-form CCPs (i.e., the solution to equa-
tion (7)) will typically not be (hence the need for
fixed-point iteration). Nonparametric estimation suf-
fers from a well-known curse of dimensionality, so
it is likely that any first-stage estimates of the CCPs
will be quite noisy, yielding small sample biases in
the second-stage (structural) parameter estimates.15

The bias will persist asymptotically if the researcher
resorts to a parametric first stage, because of mis-
specification. Aguirregabiria and Mira (2002, 2007)
have proposed a recursive extension of the two-step
pseudo-likelihood estimator that mitigates the small
sample bias (and eliminates the requirement of a con-
sistent first stage) by iterating on the best-response
probability mapping (7). This effectively swaps the
order of the nests in Rust’s NFXP approach. By forc-
ing the conditions for a BNE to be satisfied, this
nested pseudo-likelihood (NPL) estimator is fully effi-
cient (i.e., equivalent to FIML), so long as it con-
verges. However, NPL relies on best-response itera-
tion and therefore cannot find equilibria that are not
best-reply stable (Pesendorfer and Schmidt-Dengler
2010, Su and Judd 2007). Thus, it is not guaranteed
to converge. Nonetheless, it has been found to work

14 Of course, in settings in which the same firms are observed over
many periods, one might start to worry about linkages across time
and the need to control for dynamics.
15 See Aguirregabiria and Mira (2007) and Su and Judd (2007) for
relevant Monte Carlo evidence.

well in several applications (Aguirregabiria and Mira
2007, Ellickson and Misra 2008).

The final estimation method is the constrained opti-
mization approach proposed by Su and Judd (2007).
They recast the unconstrained optimization problem
described above as a constrained optimization prob-
lem subject to the equilibrium constraint (7), referring
to their approach as a mathematical program with
equilibrium constraints (MPEC). Because it does not
rely on repeatedly solving for equilibria (or the equi-
librium constraints be satisfied at each point in the
search process), MPEC is both computationally light
and robust to best-reply-unstable equilibria. However,
like NPL, it does impose a particular selection rule:
the equilibrium that is played is the one that maxi-
mizes the likelihood.

4.1. Unobserved Heterogeneity
Another relevant trade-off in the choice between the
various full-solution approaches (NFXP, NPL, and
MPEC) and the computationally lighter two-step pro-
cedure is the ability to accommodate unobserved
heterogeneity. Because they are all essentially full-
information approaches, it is relatively straightfor-
ward to account for heterogeneity using any of
the full-solution methods. Of course, including ran-
dom effects and/or random coefficients will clearly
increase the computational burden and make the
search for equilibria significantly more complex,
though various simulation methods and Bayesian
MCMC techniques could certainly be employed here.
Two-step approaches are much less accommodating
because of their more “limited information” structure
and reliance on a nonparametric first stage. In par-
ticular, any unobservables that are conditioned on by
the players must also be accounted for in the first-
stage estimation procedure. Because this is typically
treated as a reduced form, this is not at all straight-
forward. For example, even if rival firms’ unobserved
state variables do not enter a given firm’s payoff func-
tion (as is usually assumed to be the case), they gen-
erally will enter the reduced-form CCPs and typically
in a highly nonlinear manner. This can make it very
difficult to obtain consistent first-stage estimates. For-
tunately, there are several possible remedies.

First, as argued by Ellickson and Misra (2008),
if the researcher is willing to assume that the
unobserved heterogeneity is private information, the
nonparametric first-stage CCPs will still be consis-
tent, allowing the heterogeneous parameters to be
integrated out of the second stage using standard
simulation methods. Furthermore, if the unobserved
heterogeneity occurs at the market level, the first
stage could be estimated market by market (or even
player by player, if there are enough data). This is
the approach Ellickson and Misra (2011) used for their
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analysis of supermarket pricing strategies. Second, if
one is willing to assume that the unobservables are
a smooth function of observable covariates, a control
function approach is also feasible (Bajari et al. 2010).
Finally, by enforcing the full structure of the model,
the NPL approach can also be employed (eliminat-
ing the need for a consistent first stage and allowing
for a rich structure on the unobservables). Of course,
this is then equivalent to returning to a full-solution
approach. Ellickson and Misra (2008) used NPL to
control for correlated, market-level unobservables.

4.2. Examples from the Literature/Extensions
Several authors have used incomplete information
games to shed light on issues of direct concern to mar-
keters. Zhu and Singh (2009) employed Seim’s nested
fixed-point approach to model entry and location
decisions by Walmart, Kmart, and Target, document-
ing the importance of both heterogeneous competition
effects and firm-specific preferences. Orhun (2006)
extended Seim’s approach to include location-specific
unobservables, applying her framework to the entry
and location decisions of supermarkets. Ellickson
and Misra (2008) used both the two-step and NPL
approaches to examine the strategic choice of pricing
strategies in the supermarket industry. They found
strong evidence of assortative matching—firms tend
to coordinate on the same pricing strategy (e.g., EDLP
or Hi-Lo) as their local rivals—and empirical results
that support several specific predictions from mar-
keting theory. Datta and Sudhir (2011) employed a
nested fixed-point approach to examine the trade-offs
between differentiation and agglomeration in the gro-
cery industry.

Vitorino (2011) examined the joint entry decisions of
stores in regional shopping centers, explicitly control-
ling for multiple equilibria using an MPEC approach.
Draganska et al. (2009) modeled the assortment deci-
sions of ice cream manufacturers, incorporating infor-
mation from a discrete choice demand system, and
Musalem and Shin (2010) provided an alternative
model of pricing and product line decisions.

4.3. Implementation
To illustrate the incomplete information approach
to static games, we now implement several of the
approaches described above using the same data set
as before. We note that, unlike the complete infor-
mation approaches discussed earlier, each of which
altered the underlying structure of the game, the
methods considered here are all being applied to the
exact same game (i.e., they are simply alternative esti-
mators, not different structures). We begin with the
full-solution (nested fixed-point) approach and then
illustrate the two-step and NPL techniques.

Method 1 (NFXP): The first incomplete information
framework we implement is the nested fixed-point

approach. We use the same profit specification as the
complete information case,

�im = �′Xm +�′

iZim − �y−im + �im1 (8)

and include the same covariates as before. The �s
are again assumed to be i.i.d. standard normal (but
treated as private information now). The estima-
tion routine requires solving the following fixed-point
problem:

p∗

im =ê4�′Xm +�′

iZim − �p∗

−im51 (9)

which we accomplish via simple Picard iteration (suc-
cessive approximation). We note here that, in keeping
with the extant literature, we are not employing an
exhaustive search for all possible fixed points.

Once the fixed-point probabilities are obtained, they
feed into a simple log likelihood,

lnL=

M
∑

m=1

∑

i∈8W1K9

yim ln4p∗

im5+ 41−yim5 ln41−p∗

im51 (10)

which is then maximized to obtain parameter esti-
mates.

Method 2 (2STEP): As noted earlier, the two-step
estimator eliminates the need to solve for a fixed
point by recognizing that, at the “true” solution, the
probabilities are simply (unknown) functions of the
covariates. In the first stage, we construct consis-
tent estimators of these equilibrium CCPs. In princi-
ple, this first stage should be nonparametric. If, for
some reason (such as inadequate data), nonparamet-
ric methods are infeasible, we suggest using a semi-
parametric approach such as the method of sieves or
generalized additive models (GAMs).16 In our imple-
mentation, we use a GAM with tensor product inter-
actions between the variables. This first stage yields
fitted probabilities (p̂819im ) that we then “plug in” to con-
struct a likelihood

lnL=

M
∑

m=1

∑

i∈8W1K9

yim ln4p829im 5+ 41 − yim5 ln41 − p
829
im 5 (11)

in which

p
829
im =ê4�′Xm +�′

iZim − �p̂
819
−im51 (12)

where ê4 · 5 is the standard normal cumulative distri-
bution function.

Method 3 (NPL): The nested pseudo-likelihood
approach of Aguirregabiria and Mira (2007) iterates
on the best-response probability mapping (12) to
reduce small sample bias (and eliminate the need
for a consistent first stage). Note that we can always

16 For a comprehensive discussion of semi- and nonparametric
methods (including sieves and GAMs), see Pagan and Ullah (1999).
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construct a new estimate of the CCPs from the
best-response mapping

p̂
8k9
im =ê4�̂8k91Xm + �̂

8k9
i 1Zim − �̂8k9p̂

8k−19
−im 51 (13)

where 8�̂8k91 �̂
8k9
i 1 �̂8k99 are obtained by maximizing

lnL=

M
∑

m=1

∑

i∈8W1K9

yim ln4p8k−19
im 5+ 41 − yim5 ln41 − p

8k−19
im 50

(14)
The algorithm continues until �p̂

8k9
im − p̂

8k−19
im � ≤ �. In

our implementation, we initialize the NPL estimator
with the two-step probabilities (i.e., p̂

819
im 5 and iterate

until convergence 4� = 1E-850

4.3.1. Discussion of Results. Results from each
method are presented in Table 2. As we noted
above, the three models represent different estimation
approaches for the same underlying game. It is there-
fore comforting that the coefficients do not vary much
across the columns. It is perhaps noteworthy that
the 2STEP results are so close to the full-information
estimates in this case, suggesting that small sam-
ple bias is not an issue here. Although it is tempt-
ing, we will refrain from speaking to the differences
between the complete information and incomplete
information results because they were obtained using
very different assumptions and estimation algorithms.
However, there has been some recent work on inte-
grating and testing information structures in discrete
games (see, e.g., Aradillas-Lopez 2010, Grieco 2010,
Navarro and Takahashi 2010). In general, all estimates
(across both tables) have the same sign and similar
relative magnitudes (e.g., Walmart has a higher inter-
cept). Ultimately, the choice of modelling framework
and estimation algorithm is left to the researcher.

Table 2 Estimation Results from Incomplete Information Games

Variable NFXP 2STEP NPL

Common effects
Population 1090∗ 1081 1089
Retail sales per capita 1061 1065 1069
Urban 1034 1030 1037
� 1010 0092 1063

Walmart-specific effects
Intercept (Walmart) −13017 −13000 −13080
Distance to Bentonville, AK −1003 −1009 −1004
South 0058 0067 0063

Kmart-specific effects
Intercept (Kmart) −20056 −20075 −21018
Midwest 0034 0031 0030

∗All coefficients are significant at the 5% level.

5. Discussion and Future Directions
5.1. Complete vs. Incomplete Information: Which

Framework Makes More Sense?
The empirical relevance of complete versus incom-
plete information will clearly depend on the specifics
of the particular application being considered. Is it
more reasonable to assume that payoff functions are
common knowledge, or are there obvious sources of
uncertainty? Advocates of the complete information
approach note that static games are typically moti-
vated as an approximation to long-run equilibrium,
at which point any uncertainty or randomness has
long since been resolved. Thus, the assumption that
players face no uncertainty and can perfectly predict
what their opponents will do (ignoring the possibil-
ity of mixed strategies) may seem quite reasonable.
Complete information games have also received more
attention in the theory literature, and their properties
are better understood.

By contrast, under incomplete information, players
cannot perfectly predict what their rivals will do—
they behave as if they are playing against a distribu-
tion of player “types.” Consequently, they may prefer
to change their minds once they observe the actual
decisions of their rivals. This is ruled out by the one-
shot, simultaneous-move structure of the game. This
vulnerability to ex post regret was first noted by Einav
(2010) and was part of his motivation for changing
the timing of the model to sequential moves (where
such regret is mitigated). Of course, randomness and
uncertainty seem a natural component of most strate-
gic interactions. It is not hard to think of real-world
examples of firms that guessed wrong about the
appeal of a new product (New Coke!) or the reaction
of their rivals (high-definition DVD). Unfortunately,
the one-shot structure of static games does not give
players the ability to adjust to these realizations. This
is a primary motivation for introducing dynamics,
whereby firms are able to adjust to an ever-evolving
flow of new information. Whereas two-step methods
have dramatically reduced the computational burden
of estimating such models, the empirical analysis of
dynamic discrete games is still at an early stage of
development.

5.2. Beyond Latent Payoffs
We have thus far followed the bulk of the existing
literature in considering purely latent payoff struc-
tures. This is frequently the most empirically rele-
vant case, as discrete choices are often all that is
observed in the data (furthermore, some choices, such
as entry, are naturally discrete). Although a complete
discussion of mixed continuous and discrete games
is beyond the scope of this paper, we will briefly
discuss some recent methods for incorporating addi-
tional, postentry information on quantities, prices,
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revenue, or costs. Such data are increasingly available
via direct partnerships between researchers and firms,
as well as through the proliferation of high-quality
academic data sets such as the IRI Marketing Data Set.
These data can be used to estimate more sophisticated
specifications for the game. For example, if one had
access to prices and market shares, it might be possi-
ble to construct structural profit measures (e.g., logit
demand with Nash in prices supply) and use those
instead of their reduced-form analogs.

Ignoring the information contained in postentry
outcomes is inefficient. It may also reduce the set
of parameters that can be identified and limit the
scope of any subsequent counterfactuals. Unfortu-
nately, incorporating payoff data into discrete empir-
ical games is not straightforward, as the researcher
must now characterize the full joint distribution of
both the choice data and whatever additional data
he has chosen to incorporate. At the very least, this
will dramatically increase the burden of solving for
equilibria. Moreover, it also introduces a problem of
nonrandom selection. For example, the same unob-
servables that lead a firm to charge a higher price
(e.g., unobserved quality) will almost surely affect its
entry decisions as well. A small but growing literature
seeks to address these concerns.

The selection problem associated with incorporat-
ing outcome data was first noted by Reiss and Spiller
(1989) in their model of airline competition, under
the assumption of complete information. They pro-
pose a full-solution approach to modeling the joint
distribution of entry decisions and revenue outcomes
but place strong restrictions on the scope for strate-
gic interaction. Drawing on the empirical labor eco-
nomics literature, Mazzeo (2002a) used a first-stage
complete information game to construct a Heckman
(1978)-style control function in his study of the effect
of market structure on equilibrium prices in the motel
industry.17 One drawback of this approach is its
reliance on a purely statistical selection correction: the
errors in the outcome equation are simply correlated
with the errors in the choice equation. Ellickson and
Misra (2011) recently proposed a propensity score-
based approach that allows the auxiliary data (rev-
enue in their application) to depend directly on the
same unobservables as the choice data.

5.3. Beyond Independent Markets
Up to now, we have assumed (alongside the bulk
of the extant literature) that firms (players) make
independent decisions across markets (choice situa-
tions). Although this may be quite realistic in some
settings (e.g., barber shops in rural villages), most

17 Singh and Zhu (2008) and Zhu et al. (2009) apply Mazzeo’s
approach in alternative settings.

actual applications have involved industries in which
most of the players are national chains (e.g., discount
stores, supermarkets, airlines, video and car rental
outlets, gas stations). The associated “network choice
problem” introduces several complexities, substan-
tially increasing the computational burden and data
requirements and exacerbating multiplicity problems.
Nonetheless, there is a small and growing literature
aimed at relaxing the independence assumption and
directly tackling the formation of retail networks.

Jia (2008) developed a complete information frame-
work for modeling spatial competition between two
retail chains. By exploiting the supermodular struc-
ture of the two-firm problem, she was able to sub-
stantially reduce the burden of solving for Nash
equilibria, closing the model with an ex ante equi-
librium selection rule. However, her elegant, lattice-
based solution method requires that the spillovers
between own stores be positive and can only accom-
modate up to two players and a single outlet per
location. Nishida (2008) extended Jia’s approach to
accommodate multiple outlets (but only two players).
Ellickson et al. (2010) proposed an alternative frame-
work, based on the profit inequalities approach of
Pakes et al. (2005), which can handle any number of
players and spillovers of either sign. That model does
not require an equilibrium selection mechanism but
can only identify many of the structural parameters.
The structural analysis of network choice problems
and complex spatial equilibria remains a fertile area
for future research.

6. Conclusions
Discrete games offers an exciting avenue for market-
ing researchers. We have focused our attention on
static games, but there are also new developments
and challenges in dynamic games that should be of
interest to marketers as well. This paper provides
a critical overview of the estimation of static dis-
crete games, aimed at providing a concise introduc-
tion for those who are interested in the field. We have
also included computer code for implementing a few
of the most basic examples (see §2.1), intended as
a jumping-off point for more complex and realistic
implementations. We hope that our efforts will spur
interest in the area and encourage researchers to add
these concepts and methods to their toolkit.
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Appendix. Glossary
• Complete information game: A game in which

each player’s payoff function (the mapping from the
full set of players actions to the focal players payoff)
is common knowledge among all players.

• Incomplete information (aka Bayesian) game: A
game in which at least one player is uncertain about
another player’s payoff function.

• Nash equilibrium: A strategy profile in which
each player’s strategy is a best response to his (cor-
rect) beliefs regarding rival play.

• Bayesian Nash equilibrium: The Nash equilib-
rium of a Bayesian game.

• Revealed preference: The process by which a
decision maker’s preferences can be revealed through
his choice behavior.

• Coherency: A coherent econometric model is one
that yields a unique prediction for the endogenous
(dependent) variables as a function of the observed
and unobserved exogenous variables.

• Incomplete model: An econometric model in
which the mapping from exogenous variables to
endogenous outcomes is a correspondence, rather
than a function.

• Set (aka partial) identification: An econometric
model in which, even given access to infinite data, the
parameters of interest cannot be point identified but
only found to lie within a nonsingleton set. This often
occurs when the researcher is unable (or unwilling) to
impose assumptions strong enough to achieve point
identification.

• Equilibrium selection rule: In a game with mul-
tiple equilibrium, an equilibrium selection rule is a
mechanism that specifies which equilibrium is actu-
ally played.

• Control function approach: An econometric
technique in which auxiliary variables are used to
break the correlation between endogenous covariates
and the outcome variables of interest.
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