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This paper proposes and analyzes an integrated model of salesforce learning, product portfolio pricing and salesforce design. We
consider a firm selling two products, with a pool of sales representatives that is split into separate salesforces, one for each product.
The salesforce assigned to each product is faced with an independent stream of sales leads. The salesforce may also handle leads
that overflow from other product salesforces. In addition, salespeople “learn by doing” over their tenure on the job. In particular, the
more time they spend selling a particular product, the more productive the sales effort. The objective of the firm is to maximize
profits by optimizing the size of all salesforces as well as the prices of all products. Using data collected from the salesforce of
a large manufacturer, we provide evidence for the link between experience and sales, and we demonstrate how parameters of the
model may be estimated from real data. Numerical experiments using parameters derived from the data analysis indicate that the
optimal salesforce size increases with both sales productivity and the learning rate, and decreases with salesforce costs (e.g., wage per
representative), product production costs and consumer price sensitivity. We also find that worker learning can significantly dampen
the effect of rising costs (or decreasing margins) on staffing levels. Finally, we examine the impact of learning on both the optimal

salesforce structure (specialists versus generalists) as well as the optimal routing of sales leads to sales representatives.

1. Introduction

By broadening the range of tasks assigned to individual
workers, firms hope to create workforces that are responsive
to variability in workloads. In the case of a salesforce, such
job flexibility is often implemented by pooling salespeo-
ple across product lines. In a sales organization with pool-
ing, each salesperson may have a primary responsibility for
some product line but is also able to sell some subset of the
other product lines. Two important factors that influence
the performance of such a salesforce are pricing and experi-
ence. Product price will influence the demand for a product,
while the salesperson’s experience influences the likelihood
of making a sale. Therefore, when sizing and structuring a
salesforce, a firm must consider pricing and the impact of
staffing decisions on the experience of the salesforce. Un-
derstaffing the sales team for a product may lead to lost
sales and possibly to lost future market share. Overstaffing
the sales team can be expensive since good sales people are
typically well compensated. Assigning staff to product lines
must also be done carefully. Some products are complex and
sales success depends upon experience, while simpler prod-
ucts require little experience on the part of the salesforce.
In this paper, we examine the interactions among staffing,
learning, and pricing in the management of a salesforce. We
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develop a model of a salesforce that receives sales leads with
the sales volume generated from each lead depending upon
the experience of the salesperson and the price of the prod-
uct. The firm’s goal is to maximize profit by adjusting prod-
uct prices as well as how many salespeople are allocated to
each product. Our model applies to firms with the following
three attributes: (i) sufficient market power to have control
over pricing; (ii) complex products that require experience
to sell effectively; and (iii) large marketing efforts, such as
advertising in the media and at tradeshows, so that most of
the leads are generated by activities outside of the salesforce.
Specifically, a firm selling high-technology industrial prod-
ucts in a mature market would satisfy all of these criteria
(such a firm satisfies attribute (iii), for in a mature market
there are few untapped sales leads, and its salesforce focuses
its energy on following up requests by existing customers
rather than unearthing new customers). After developing
the model, we estimate its parameters using data collected
from the salesforce of one such firm.

This paper makes use of the framework developed in
Pinker and Shumsky (2000) for modeling learning in service
systems. We combine a model of job tenure with a model
of experience-based learning and apply it to the problem
of salesforce design. The current paper, however, has four
significant differences and extensions that lead to interest-
ing results not previously seen in the literature. Firstly, the
service level, defined as the throughput of sales leads, is de-
termined endogenously while it is exogenously determined
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in Pinker and Shumsky (2000). Therefore, we are able to see
how optimal staffing responds to changes to cost parame-
ters. Given this additional degree of freedom, we also find
that worker learning can significantly dampen the effect of
rising costs (or decreasing margins) on staffing levels. For
example, if learning is a significant factor, an increase or
decrease in the cost of salesforce compensation has a rela-
tively small impact on the optimal salesforce size. Secondly,
we model a more complex routing of customers (sales leads)
to workers (salespeople) that more accurately reflects a com-
mon practice in sales organizations. Given this routing, we
arrive at the surprising result that, with learning, pooling of
workers may lead to optimal staffing levels that are higher
than when workers specialize. This contradicts the conven-
tional wisdom that the economy of scale provided by pool-
ing reduces staffing requirements. Thirdly, the model incor-
porates pricing decisions and their effect on demand. As a
result we are able to study the relationship among staffing
levels, job flexibility, and price levels. In particular, we find
that the optimal salesforce size declines as price sensitivity
increases. We also find that when learning is a significant
factor in determining sales volume, a specialized (or “ex-
clusive™) salesforce leads to higher optimal prices than the
optimal prices for a pooled salesforce. Fourthly, motivated
by data collected from the salesforce of a large manufac-
turer, we propose a learning-curve model different from the
model in Pinker and Shumsky (2000), and we demonstrate
how parameters of the model may be estimated from the
data.

In the next section, we present an overview of the rel-
evant literature. In Section 3, we formulate our model by
integrating a service process model with an employee tenure
model, a model of experience-based learning, and a model
of consumer demand. Section 4 contains analytical results
that describe the impact of various parameters on the opti-
mal price. Section 5 describes the analysis of industry sales
data that provide baseline parameters for the numerical ex-
periments of Section 6. These numerical experiments pro-
vide insights into how learning effects staffing and pricing.
Section 7 summarizes our results and discusses possible ex-
tensions of the model.

2. Literature review

As noted above, this paper is most closely related to Pinker
and Shumsky (2000). Other researchers have also consid-
ered parts of the problem addressed in this paper but we
believe that ours is the first to integrate all of them into one
model. Some researchers have studied the control problem
of how to hire, fire and promote workers to maintain ap-
propriate staff levels when career paths are stochastic, and
these are listed in Pinker and Shumsky (2000). None of these
studies consider the effect of pricing on staffing and there-
fore do not connect staffing and learning to sales, limiting
their applicability to salesforce design.
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The literature on salesforce management has focused
on either salesforce incentives, see for example Basu et al.
(1985), Lal and Srinivasan (1993), Joseph and Thevaranjan
(1998) and Bhardwaj (2001), or salesforce sizing and mix
issues. In this paper, we do not focus our attention on com-
pensation issues. In particular, we assume that effort is per-
fectly observable and hence a fixed wage, forcing contract
is optimal.

Montgomery and Urban (1969) and Lucas et al. (1975)
use profit maximization models to solve for the optimal
salesforce size. A limitation of their approach is that they
ignore the presence of multiple products and/or territories.
Lodish et al. (1988) use a more sophisticated approach to
modeling the issue in the case of one particular firm. They
showed, for this one firm, that adding salespeople and re-
deploying them would result in increased profits. Zoltners
(1976), Lodish (1976, 1980), Rangaswamy et al. (1990), and
Mantrala et al. (1992) consider the problem of finding the
optimal allocation of salespeople to territories, products or
customers. These studies use static frameworks that do not
incorporate learning effects within the salesforce. Another
issue that has not been addressed adequately in the litera-
ture is specialization and the effect it has on structuring the
salesforce. Given that salespeople often specialize in partic-
ular products and that such specialists are scarce, there are
instances when a non-specialist serves a customer, which
may have an impact on sales.

Dewan and Mendelson (1990), Stidham (1992) and So
and Song (1998) are examples of works in which both ca-
pacity and pricing are endogenous to the firm’s decision
problem. In all of these, the firm is modeled as a single-
server queue and capacity is determined by the service rate.
In this paper, we are explicitly modeling capacity as the
staffing level in a multi-server queue. Furthermore, we con-
sider the interaction of parallel queues serving different cus-
tomer types. Finally, in our model price determines the sales
quantity rather than the customer arrival process. As we
mentioned in the Introduction, our formulation is appro-
priate for environments in which sales leads are “handed
off” to the salesforce.

To summarize, we are studying a set of problems that
have been looked at in isolation from various perspectives in
the marketing and operations literature. We aim to integrate
these diverse perspectives into a unified model that will help
us to understand the dynamics of learning and its impact
on pricing, salesforce size and salesforce design.

3. Model formulation

Consider a firm that sells two products, A and B, and has
two types of salespeople, A and B. We assume that sales
leads representing customers interested in each of these
products arrive according to a Poisson process with arrival
rates of A5 and Ap respectively. In the following, we refer
to customers and sales leads interchangeably. We can state
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the profit function of the firm in very general terms as a
function of the staffing S = (Sa, Sg) and the price of each
product p = (pa, pp) as follows:

(s, p) = Z Z riiqij(pi — ¢i) — diSi, (1

i=A,Bj=AB

where ry; i1s the throughput of type-i leads through type-
J salespeople, g;; is the expected quantity of a product i
sold by a type j salesperson pursuing a type-i lead, ¢; is
the production cost of each unit of product i and d; is the
cost per unit time of each salesperson. Both ¢; and d; are
exogenous parameters. The following sections describe how
we find the throughput of each customer type (r;) and the
quantity sold (g;j).

3.1. Throughput statistics

In practice, sales leads must be allocated to individual sales-
people. Each salesperson may work on many leads simulta-
neously with a particular lead being active for days, weeks
or months depending upon the nature and characteristics
of the product class. As we discussed in the Introduction,
it is common for salespeople to be assigned primary re-
sponsibility for one set of products and secondary respon-
sibility for others. For example, the firm would prefer that
type-i salespeople sell type-i products, but if all i salespeo-
ple are occupied the firm may want a type-j salesperson to
follow-up on the lead rather than lose the sales opportunity
altogether. In practice, salesforce compensation is often de-
signed as a matrix that assigns a commission to salesperson-
type and product-type pairs. The purpose of such a matrix
is to encourage salespeople to focus on their primary prod-
uct lines while keeping the option open for cross-selling. To
simplify our analysis, we assume that the assignment of cus-
tomers to salespeople occurs as follows. When a type-i sales
lead arrives it is directed to a type-i salesperson. However,
if all type-i salespeople are busy pursuing other leads the
lead is routed to a type-j salesperson. If all salespeople (i.e.,
of both types) are busy, the lead/customer is lost. Within
each group of salespeople, arrivals are routed so that work
is shared equitably among the salespeople. Figure 1 shows
the routing of leads through the salesforce in our model.
We refer to this as a hierarchical salesforce design.

AA N number of servers
=S4 (rate=p)

A overflow

B overflow,

AB

4

number of servers

l d = Sp (rate =)
v

customers not served

Fig. 1. Routing of leads through a hierarchical salesforce.
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We are modeling the salesforce as a pair of multi-server
service systems with exponential service times that operate
in parallel and receive their own independent Poisson ar-
rival streams with rates A4 and Ag but also allow leads to
overflow into each other. Later we will also examine systems
in which a group of salespeople are dedicated to a single
product. Because the “single-product” model is relatively
simple (e.g., the sales leads flow through an M/M/S/S
queueing system), we will focus on the more general two-
product model here. We will assume that the service rate
of each salesperson, u, is the same (although it is not dif-
ficult to relax this assumption). Note that we are modeling
each lead as being processed sequentially by a salesperson
while in practice a salesperson would be pursuing multiple
leads simultaneously. We make this abstraction to simplify
the calculation of queueing statistics, and we believe that
explicitly modeling the simultaneous processing of leads
would be an interesting topic for further research. In addi-
tion, we assume that sales quantity does not affect the time
it takes to pursue a sales lead.

The sales quantity model described in the next section
uses two sets of statistics from this model: throughput and
utilization. Let rap represent the throughput of type A leads
through type B salespeople; rpa, raa, and rgg have similar
interpretations. Note that r;; is a function of the staffing
vector S = (Sa, Sg). Utilization is represented as pag, OBa,
Paa, and ppa, and each of these is calculated easily from
the appropriate values of r;;.

Calculating the throughput statistics of the salespeople is
more difficult than finding the throughput of a standard loss
system because the arrival process to each group of sales-
people is not purely Poisson but is instead a combination of
a Poisson process and bursts of arrivals that are sent when
the other sales group is fully occupied. For this system we
calculate throughput statistics numerically. Specifically, we
define a two-dimensional state space (Na, N) where N;
represents the number of busy salespeople of type i. The
balance equations for this state space are relatively simple
to enumerate, and we use these equations to solve itera-
tively for the steady-state probabilities of (N4, Np) (Gross
and Harris, 1985, p. 437). Given the steady-state probabili-
ties, we calculate the expected throughput and utilization.

3.2. Quantity sold

The quantity of the product sold as a result of pursuing a
lead depends upon the price of the product and the experi-
ence of the salesperson with that product. Here we develop
a model of demand that is based upon customer sensitivity
to both price and the experience of the salesforce as well
as a model of the career path and experience accrual of an
individual salesperson.

Given that a type-j salesperson pursues a lead for prod-
uct i, we assume that the sales generated by that lead is
a random variable D;; = a;; — B;p;, where «;; is a random
variable that depends upon the (random) experience level
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of the salesperson encountered by a customer and g; is the
sensitivity of demand to price for product i. Therefore, in
the profit function of Equation (1):

qij = E[Dlj]'

The important difference between our specification and
the traditional, linear demand model is that we allow the
intercept to vary across salespeople. In the marketing lit-
erature sales volume is typically described as a function of
the skill of a salesperson. Rao (1990) for example, proposes
the functional form:

), 2

where s is the sales, 5o is the maximum achievable sales
level, b is the skill of the salesperson and # is a parameter
determining the rate at which sq is approached. From the
learning-curve literature (Yelle, 1979; Badiru, 1992), we can
see that often heterogeneity in skill is a result of heterogene-
ity in experience levels. In this paper we combine these two
perspectives by expressing sales volume as a function of ex-
perience. We use the same functional form as in Equation
(2), in particular we assume that o = K;;(1 — exp—"v»))
where wy; is the accrued experience of a type-j salesperson
selling product i (measured in units of time), Kj; is a con-
stant representing the upper limit of sales ability, i.e., the
sales volume of a salesperson with infinite experience, and
nis a learning parameter. Much of the traditional literature
on learning curves uses units of work, for example widgets
built, as a measure of experience. In manufacturing set-
tings where unit labor costs decrease with learning because
workers become faster, and it is easy to measure costs, this
approach is appropriate. In our application the work unit is
a sales lead and it is difficult to obtain data on the number
of leads handled. Furthermore, it is not clear that the time
spent per lead will decrease with experience. Rather, as we
model it, the likelihood of a sale will increase with experi-
ence. Therefore, additional experience selling a product has
the effect of increasing the intercept of the demand for that
product. This functional form is appealing for a number of
reasons. First it is consistent with the marketing literature,
second, it is consistent with the learning-curve literature in
which most learning curves are asymptotic, and finally we
have found that it provides a reasonable fit to actual sales-
force performance data. The learning-curve literature typ-
ically models production costs as a decreasing function of
experience that asymptotically approaches zero. In our case
we are modeling the effect of experience on sales (or rev-
enue generation) and therefore use an increasing function
of experience that asymptotically approaches some upper
limit. Note that the proposed function differs from the un-
bounded “power function” used in Pinker and Shumsky
(2000) to describe the relationship between experience and
service quality. We found that the bounded function pro-
posed here provided a better fit to the sales data that will
be described in Section 5.

s =50l —e”
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Given our discussion above we can now define quantity
sold as:

Dy = K;(1 — e™™)—Bpi. 3)

Let y be the tenure of a salesperson. Then the expected sales
quantity is:

qij = E[Dyj] = Kjj — KyE)[E[e™™ | y]} - Bipi.  (4)

The outer expected value is over the tenure of the type-j
salesperson serving a given customer and the inner expected
value is over the experience of the salesperson with the type-
i product, given tenure y.

It can be shown that when the average time spent on a
sales lead is small relative to the tenure of a salesperson then
E[exp# | y] can be closely approximated by exp(—"#).
This approximation is similar to one that appears in Pinker
and Shumsky (2000) and its accuracy here has been verified
using simulation. Therefore:

o0
0= [ Kl —emig0di—pp )

The probability density function for y, g,(t), is derived
from a model of a salesperson’s tenure process in which a
career is divided into stages, so that the stages of the ca-
reer can be modeled as states of a continuous-time Markov
chain. The tendency to end employment (by being fired or
quitting) varies from stage to stage, and the time a sales-
person stays in a stage before leaving is exponentially dis-
tributed. The parameter A; is the rate at which salespeople
move from the first stage to the second stage, X, is the rate
at which they end their employment in the first stage, A3
is the rate at which workers in the second stage end their
employment, and X > As.

Using this model of the tenure process it can be shown
that:

A4+ Ak, )
- Bip:.
(A + A3)(A3 + npyy)
(6)

Equation (6) accounts for price, learning and the tenure
process to determine the quantity sold. Since p;; is a by-
product of the staffing levels, S = (S4, Sg), Equation (6)
also links staffing to sales.

npij
By YA+ Ay +n,0,'j(

3.3. The complete objective function

We can now restate the optimization problem faced by the
firm as:

Max I1(S, p)
S.p

where

o ii(S)
(S, p) = {ri'(S)[Ki-(rj )
i=A,Bj=ZA,‘B g ’ nS;

n
(M + A2+ n(rij(s)/MSj))

X
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y (1 N A2+ Ak )
s + 73)0s 1G5 SISy
_ ﬁ,-pi] (00— c) — diS; } ™)

There are a number of trade offs explicitly represented in
this objective function. First we know that throughput (r;;)
is increasing in staffing and therefore there is a trade-off be-
tween the additional revenue brought by increased staffing
and the marginal cost of an additional salesperson d;. How-
ever, while increasing staffing increases the number of sales
leads that can be pursued, increasing staffing also reduces
the number of units sold per lead because it reduces the
utilization and therefore the experience of the salesforce.
This complex effect of utilization on experience and prof-
its can be seen by the appearance of the variable S in the
denominator of some of the terms in Equation (7). This
trade-off is clear when the salesforce sells a single product.
In Section 6 we will see that this utilization effect also has
a significant influence on salesforce design decisions when
there are multiple products, e.g., whether to deploy a spe-
cialized or pooled salesforce.

4. Optimizing prices, given salesforce size

The complex interactions among staffing, sales and ex-
perience make it difficult to derive an analytical charac-
terization of the optimal decision. However, given the ex-
pected profit function, Equations (1) and (7), it is relatively
straightforward to solve for optimal prices given a specific
staffing of each type of salesperson.

To obtain the optimal prices given staffing we differenti-
ate expected profit, Equation (1), with respect to price and
obtain:

2

0q;;
[rij"g‘i @i—c)+ riquj:l =0 fori=A,B. (8)
j=A,B ap:

Solving for price and using the notation of Equation (7) we
find:

¢ s rij(S))( n )
pi= 2 + jZ"III{lJ( u,Sj A+ A+ ”(rU(S)/MSj)
A2 + AiAr >/ .
! 1 2B; ijs
X( " (A1 + A3)(A3 + n(ri(S)/1S))) p 2}__,’"/
fori=A,B. ©9)

This expression is similar to the standard monopolistic price
for a linear demand curve, except that the intercept is a
weighted average of the intercepts of the two sources of de-
mand. If there were only one product, no learning effects (so
that the demand intercept is a constant, ), and throughput
were equal to one, then the price equation is:

_C+C(

which is the standard monopoly price.
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We now describe a few properties that follow directly
from the price equation. The price of product i,

1. increases with the cost, ¢;, of product ;

2. increases with the maximum productivity, K;;, of a type-j
salesperson with product i;

3. decreases with the price sensitivity 8;, of product i;

4. increases with the learning rate, n (while this is not obvi-
ous from Equation (9), it can be shown that dp;/dn > 0).

One property we do not specify here is the relationship be-
tween staffing and pricing. While it might seem appropriate
to conjecture that prices and staffing (for a given product)
move in the same direction, this is not clear from our model.
While throughput is increasing in staffing, utilization is not,
and this may create a non-monotone relationship between
the two. We revisit this issue in the numerical experiments
of Section 6.

5. Industry data analysis

The model described in Section 3 assumes that sales produc-
tivity grows with the experience of a particular salesperson.
While the impact of experience on manufacturing produc-
tivity has been well documented by empirical research (see
the summary by Yelle (1979)), to our knowledge there have
been no published studies linking sales and experience in
a salesforce. The data analysis in this section helps us to
identify reasonable learning-curve parameters that will be
used in the numerical experiments of the next section.

For our analysis we have obtained sales data from one
particular company, “Firm A,” a market leader in office
products with an annual sales revenue of over $10 billion
and over 40 000 employees. Although the firm operates in
various product and service markets we restrict our focus to
the division that is the flagship of the company and accounts
for a substantial proportion of its revenues. The business en-
vironment of this division conforms to the assumptions of
our model: the firm is a market leader and has some pricing
power, the product is complex, and the market is mature so
that salespeople primarily respond to requests from exist-
ing customers, rather than finding new leads. The division
has two primary salesforces, “Representatives” (or “Reps”)
and “Specialists”. Specialists sell technologically advanced,
high-priced equipment to large corporations while Reps fo-
cus on less-complex and less expensive products for small
and medium-sized firms. Our data set is cross-sectional: it
records the number of years a salesperson has been with the
firm (tenure) and the most recent annual sales figure for each
employee. Table 1 contains a summary of the data. Figures 2
and 3 display the relationship between tenure and sales in
each sale force. Each ‘e’ in Fig. 2 represents the average sales
of 50 salespeople, while each data point in Fig. 3 represents
a group of 40 salespeople. For example, the first point on
the lower left of Fig. 2 shows the average sales of the 50 most
inexperienced Reps: their average tenure was 5 months, and
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Table 1. Summary of salesforce data

Misra et al.

Employee tenure (years)

Annual sales per employee (3, x10°)

Salesforce Number of employees Mean Std. dev. Min. Max. Mean Std. dev. Min. Max.
Reps 1239 9.1 9.3 0.1 35.6 1.3 1.1 0.005 9.5
Specialists 409 10.0 7.8 0.2 34.8 3.1 22 0.005 149

the average sales in that group was $330000/year. In the
figures we see a relationship between tenure and sales that
could be attributed to learning, and that in each salesforce
there is a large number of relatively inexperienced salespeo-
ple on the “steep” part of the learning curve. For example,
over half of the Reps have less than 4 years of experience.

To quantify this relationship between tenure and sales we
estimated the parameters of the following model for each
salesforce:

sales; = H(1 — e M) + ¢, (10)

where sales; represents the dollar value of sales made by a
salesperson i, T; is the length of tenure, and ¢; is a stochastic
error term assumed to be distributed identically and inde-
pendently normal with mean zero. We used the maximum
likelihood method to estimate H and N from each data set.
These estimates are presented in Table 2 and the associated
functions are plotted as dotted lines in Figs. 2 and 3. As
one might expect, the learning curve is more gradual and
the asymptote H is higher for the specialists, who handle
more complex and expensive products.

The proposed model seems to provide a good fit with
the data, although there are clearly other factors besides
experience that influence sales (R? = 0.10 and 0.11). There
are also some limitations to this data set that restrict our
ability to precisely estimate the learning-curve parameters
n and Kj; (or, K when there is just one product). Because
of the aggregate nature of the data, the statistical model
presented in this section cannot control for a variety of

Annual Sales ($, x10°)

0.0 ; v ; .
0 5 10 15 20

Tenure (years)

Fig. 2. Reps data and model.

complicating factors, including selection bias, variations in
utilization among salespeople, and differences in the quality
of leads assigned to each worker. Therefore, the parameter
values should be interpreted as approximations, and we will
only use them to guide our choice of parameter ranges in
the following numerical experiments. '

In particular, we believe that the two estimates of N (0.046
and 0.066) represent relatively low values of n: both the Spe-
cialists and Reps deal with complex markets and products,
and these values of » would indicate a slow rate of growth in

‘sales as experience increases (e.g., with n = 0.046, a sales-

person with 1 year of experience expects to achieve 42% of
maximum sales). As a lower bound for this legrning-curve
parameter, we will use n = 0.02 (in this case, a salesperson
reaches just 20% of the maximum after 1 year and requires
almost 17 years to reach 98%). On the other hand, some
products and markets are relatively simple, so that sales-
people have a rapid ascent up the learning curve, relative to
their tenure. After this rapid climb, sales do not increase sig-
nificantly with experience. To represent such environments
we use upper bound of n = 4 (a salesperson reaches 98% of
the maximum within 1 month).

While the estimates of N derived from the industry data
lead directly to our estimates of # in the general model,
the connection between H and the parameter K is more
complex. There are two complications when trying to derive
K from H: (i) K represents a quantity of product sold per
sales lead, while H is an upper bound on the annual sales
per salesperson; and (ii) K is the number of items sold per
lead, given infinite sales experience and a price of zero (see

N
=]
-
X
&
(23
2
5]
(7]
©
3
<
c
<
0 ¥ T T T
0 5 10 15 20

Tenure (years)

Fig. 3. Specialists data and model.
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Table 2. Maximum likelihood estimation results

Salesforce  Parameter Estimate Std.err T-stat P-value
Reps H 1596065 35655 448  <0.0001
(R? =0.10) N 0.066  0.0083 8.0 <0.0001
Specialists H 3579766 124986 28.6 <0.0001
(R?=10.11) N 0.046  0.0011 444 <0.0001

Equation (3)). To overcome complications (i) and (ii) we
make a few additional assumptions and then find a value of
K that is consistent with the observed sales data. Details of
this procedure are included in the next section. In practice,
however, a firm’s prices, cost per unit, and quantity sold
are often observable, and these data can be used to more
directly estimate the cost and demand parameters of the
model.

6. Numerical experiments

Here we explore the interactions among the exogenous
parameters of the model (e.g., learning rate, price sensi-
tivity and cost parameters) and the endogenous decisions
(staffing levels, prices, and routing decisions). In Section 6.1,
we describe baseline parameters for the model that are de-
rived from the analysis of Section 5 and are used in sub-
sequent comparisons. In Section 6.2, we find the optimal
staffing levels for a single-product system, given the base-
line parameters, and we see how the optimal staffing level
changes as the cost, learning curve, and productivity pa-
rameters change. In Section 6.3 we consider a firm with
two products and two salesforces and investigate the rela-
tive benefits of a pooled salesforce versus a system with two
completely specialized salesforces. We also examine the im-
pact of the routing decision within a pooled salesforce by
comparing two sales-lead assignment procedures: (i) ran-
dom assignment; and (ii) the assignment of primary and
secondary products to each salesperson, the hierarchical
system described in Section 3.1.

6.1. Baseline scenario

The parameters for the baseline scenario are based upon
the sales “Rep” data from the previous section.

¢ From the analysis above, n = 0.066 in the baseline model.
However, we will vary n from 0.02 to 4.

e The tenure parameters (A1, A2, and A3) have been set so
that the distribution of tenure found by a random ar-
rival to the system is similar to the distribution of tenure
in the Rep data set. In particular, the model is config-
ured so that the average tenure of a sales Rep seen by a
customer is just over 9 years, with a large percentage of
relatively inexperienced salespeople: 52% below 4 years.
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d = $350/day. This is the average rate of compensation

in the industry.

e S = 2. Below we experiment with a range of 8 and de-
scribe the impact of changes in 8.

e 1 = 1/day for all products and salespeople. According
to the industry data, the average total time spent on a
single lead is approximately 1 day.

e ) = 40/day. The size of an entire salesforce can often be
measured in the thousands, but an offered load (A/u)
of sales leads equivalent to 40 salespeople corresponds
to a medium-sized regional salesforce for a single prod-
uct. In Section 6.2, we will consider the salesforce for a
single product taken in isolation, with A = 40/day, while
in Section 6.3 we apply our model to two products sold
by two salesforces. In the two-product case we assume
that all parameters for each product and salesforce are
equal to the baseline parameters described here, except
that A, = Ag = 20/day (for a total load of 40 on the sys-
tem). To simplify the exposition we are reporting results
of experiments with a completely symmetric system in
which the parameters for each salesforce and product
are the same. We have conducted numerous experiments
with asymmetric systems without revealing any major
additional insights.

Unfortunately, the data set described in Section 5 does
not contain sufficient information to find ¢ or K. The model
developed from the industry data does indicate that the av-
erage Rep, given essentially infinite experience, can earn
$1600 000 in annual revenue. Under our assumption that
the average lead requires 1 day of work, and assuming 250
workdays/year, these most experienced Reps average $6400
in revenue per lead. To use this information to find the max-
imum possible quantity of product sold per lead (K) and the
cost per unit (c), we must make two additional assumptions.
Assume that firm A: (i) uses the optimal price, as described
in Section 4; and (ii) earns a 25% margin on its sales (in-
cluding the cost of the sale force itself). Then, K = 7.2 and
¢ = $1120 are the only parameter values that are consis-
tent with these assumptions, the parameters above, and the
observed maximum revenue of $6400/lead. These values
were found by “reverse-engineering” the model described
in Sections 3 and 4. While useful as a baseline, we will also
experiment with a range of both K and c.

6.2. A single product

First we consider a firm with a single product to sell and
a single salesforce. For the single-product case, the objec-
tive function of Equation (7) has a single term in the sum-
mation, and the subscripts i and j are removed (e.g., Kj;
replaced by K). Throughput and utilization statistics are
calculated from the Erlang-B formula. Given the baseline
parameters, we find the optimal price (Equation (9)) and
total profit (Equation (7)) as a function of salesforce size,
S. The results are shown in Fig. 4. The optimal price is
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Fig. 4. Profit and price as staffing varies in the baseline model.

$1870/unit, the profit-maximizing staffing level is 41 sales
representatives, and the optimal profit is $25000/day. We
examined the objective function for hundreds of cases and
in each case the objective function was unimodal. This was
true for both the one-product and two-product scenarios.
However, to be thorough, all results presented here were
found by searching for the optimum over the entire range
of reasonable staffing configurations.

In Fig. 4, large unit profits explain the rapid rise in
profitability on the left-hand side of the graph: as we add
salespeople, throughput, r, rises and profits increase. This
increase is partially balanced by the cost of each addi-
tional sales representative. However, in this baseline case
d = $350, and the decrease in profits on the right-hand side
of the graph is much more rapid than the rate implied by
d. In this case, the primary cost of additional servers is the
decrease in the utilization of each server and the concur-
rent decrease in experience. As utilization decreases, both
the demand-curve intercept and the optimal price decrease
(see Equation (9)). Here the utilization effect first described
at the end of Section 3 has a strong impact on both the
profit and the size of the optimal salesforce. We also see,
in Fig. 4, that the optimal price decreases with the size of
the salesforce. We found that this was the case in all our
numerical experiments. This observation is consistent with
intuition: as we increase staffing we want to increase volume
and therefore must decrease prices.

To determine the impact of cost, productivity and learn-
ing parameters on the optimal levels of staffing, we var-
ied each model parameter over a wide range around the
baseline value described above. For example, § took on
values from one-half to three. With 8 = 0.5, the customer
is barely price sensitive and the firm’s profit margin is high
(80%), given the other baseline parameters. With § = 3, the
consumer is extremely price sensitive, and given the other
baseline parameters the firm cannot be profitable (in this
case, the optimal size of the salesforce is zero).
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Table 3. Effect of exogenous variables on the optimal salesforce
size

Parameter K c B d n

Direction of change of the
optimal salesforce size
as the parameter increases

For each parameter combination, we solved for the op-
timal salesforce size. In all, we conducted over 100000
of these numerical experiments (contact the authors for
a detailed description of the parameters used). For five
of the parameters the impact on optimal staffing levels
was monotonic. These results are presented in Table 3.
In the table, a + (=) indicates that the optimal salesforce
size is non-decreasing (non-increasing) as the parameter
increases.

These results are intuitive. The impact of K, the produc-
tivity parameter, is positive for salesforce size. Because K
increases the demand intercept term, an increase in K leads
to an increase in salesforce productivity thereby making
the addition of salespeople profitable. On the other hand,
an increase in the cost of the product, ¢, has a negative im-
pact on salesforce size. Again, this is because an increase
in product cost decreases the marginal revenue gained by
adding an additional salesperson. A similar pattern is seen
for the price sensitivity parameter, B: as price sensitivity in-
creases, price goes down, and this diminishes the marginal
revenue of each salesperson. This leads to a decrease in the
salesforce size. An increase in d, the cost of a salesperson,
reduces the optimal salesforce size. Finally, an increase in n
both increases salesforce productivity and reduces the im-
pact of the utilization effect described above. Both of these
effects lead to an increase in salesforce size. However, we
will see in the next section that the optimal salesforce size
may not be monotone in » when the salesforce handles two
products, rather than one product.

In addition, the existence of a learning curve for the sales-
force can affect the impact of changes in other parameters;
if altering a parameter changes staffing levels, then learn-
ing can dampen this effect. For example, in Fig. 5 we see
the optimal salesforce size under a range of compensation
rates for our model with learning (the solid line) and for
a model without learning (the dashed line). In the model
without learning, salesforce productivity is fixed so that the
two models have the same optimal staffing level, given the
baseline parameters. The figure shows how an increase in
the cost per salesperson leads to a decline in the optimal
salesforce size (as suggested in Table 3), and the figure also
shows that the rate of decline is much more gradual, given
employee learning. This is because any reduction in staffing
also increases utilization. Therefore, in an environment with
a learning curve, the marginal contribution of each sales-
person is larger and the optimal number of salespeople re-
mains high as d grows. We found a similar effect as we varied
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Fig. 5. Optimal size of the salesforce as the cost of a salesperson,
d, varies.

parameters S and c. In each case, the presence of learning
moderates the impact of changes in the other parameters.

6.3. Two products

In this section, we consider a firm with two distinct prod-
ucts and salesforces. We consider three options for manag-
ing these salesforces: (i) specialized; (ii) hierarchical; and
(iii) pooled. Under the specialized structure, each salesforce
has exclusive selling rights for one of the products and does
not receive leads for the other. Therefore, the two products
and their salesforces can be managed independently, as if
there were only one product and one salesforce. Under the
hierarchical structure we assume that each product has a
primary salesforce, but if all the primary salespeople are
busy then an arriving lead is passed to the other, secondary
salesforce. Finally, under the pooled structure there is a sin-
gle salesforce responsible for both products, and arriving
leads are assigned randomly to an available salesperson.
Note that both the hierarchical and pooled systems take
advantage of queueing economies of scale; in fact, these
two systems have identical throughputs, and the overall av-
erage utilization of a salesperson is the same in both systems.
However, the two systems differ in their routing, how they
make the initial assignment of leads to salespeople, and this
leads to significant differences in optimal staffing levels and
profitability.

In Fig. 6 we plot the optimal staffing level as a function of
the learning rate parameter n for the three salesforce struc-
tures. As in a traditional staffing problem, economies of
scale in the pooled system lead to a smaller workforce than
the specialized system. In addition, the optimal salesforce
sizes of both the pooled and specialized systems increase
with n, as suggested in the previous section’s experiments
with one product. However, staffing for the hierarchical sys-

949

[+]
o

hierarchical

4.}
(34}

sunenens” poOOled

H
puseed
s

-~
-
-
ea,

45

1;
40% ' :

0 1 2 3 4
Learning Rate (n)

Optimal Total Size of Salesforce
3
-

Fig. 6. Comparing salesforce sizes as the learning rate varies.

tem rises, and then falls, as » rises. The hierarchical system
has a larger salesforce than the specialized system when n is
low, and the optimal staffing level of the hierarchical system
can be dramatically higher than that of the pooled system,
even though both of these systems benefit from economies
of scale. Why? _

The staffing pattern for the hierarchical system is due
to the presence of experience-based learning in the model.
When # is low, a salesperson with little experience is ex-
tremely unproductive, so experience gained by a salesper-
son must be focused on one product to maximize learn-
ing. In the specialized system, the learning is focused by
design, but in the hierarchical system each salesperson re-
ceives overflow leads for their secondary products. To pre-
vent this overflow, it is optimal when » is low to staff each
salesforce at higher levels in the hierarchical system than in
the specialized system. For high n, however, most salespeo-
ple reach the plateau of the learning curve for both primary
and secondary products, and the staffing level for the hier-
archical system is close to the level for the simple pooled
system.

The dynamics described above also have an effect on pric-
ing. In Fig. 7, we plot the optimal price as a function of the
learning rates for all three systems. As the learning rate in-
creases, the optimal price increases, because each salesper-
son becomes much more effective; increased learning leads
to a rise in the demand curve. We also see that the spe-
cialized system has higher prices than the pooled system
because the specialized system has higher-skilled salespeo-
ple, producing a higher demand curve.

Finally, we examine which system is preferable, for a given
value of n. Figures 8 and 9 compare the profitability of the
three systems. For the lowest values of n, none of the systems
are profitable. In this case, for a wide range of n the special-
ized system is more profitable because of that system’s abil-
ity to focus its salespeople on a single product. Only with
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the highest values of n do economies of scale dominate, and
the hierarchical system is preferred. The “crossing point,”
is shown in Fig. 9, and occurs at n = 3.3, a learning rate that
enables a salesperson to reach 96% of the maximum sales
effectiveness within 1 month. Such a rapid rise in the learn-
ing curve could be due to a variety of factors, including the
simplicity of the product and market, an extremely effec-
tive salesforce training program, or the ability of the firm to
consistently hire salespeople who are already experienced
in selling the firm’s product.

For no value of n is the pooled system best, and its per-
formance is often significantly worse than the alternatives.
For low n, pooling prevents the salespeople from learning
enough about either product. For the highest values of ,
the hierarchical system takes advantage of economies of
scale while allowing each salesforce to focus on its primary
product.

Of course, the relative profitability of the three types of
systems depends upon all the parameters. For example,
reducing the system size and/or increasing the expected
tenure length increases the benefits of the hierarchical sys-
tem, while increasing the wage d amplifies the differences
between the specialized system and the other two systems.
In addition, increasing d lowers the crossing point where
the profits of the specialized and hierarchical systems are
equal. If d is doubled from $350/day to $700/day, the cross-
ing point moves down to n = 2.0. With this parameter, a
salesperson achieves 86% of maximum sales effectiveness
within 1 month and reaches 98% after 2 months.

7. Discussion and conclusions

In this section, we summarize our major findings, discuss
the model’s contributions and limitations, and point out di-
rections for future work. We have applied a previous model
(Pinker and Shumsky, 2000) combining learning, experi-
ence, and service systems to an important new application.
For many products, the salesforce’s effectiveness is linked
to their knowledge of the product and the customers, and
much of this knowledge can only be obtained through ex-
perience. This model is the first to show how this learning
curve affects salesforce management. To apply the model in
an appropriate manner we have extended it to include pric-
ing, endogenous service levels, and a routing scheme that
more accurately reflects salesforce management practice.
By making the service level endogenous we are able to
see how optimal staffing responds to changes to cost pa-
rameters. For example, our results in Fig. 5 show that when
salesforce skill is viewed as fixed and independent of staffing
levels, changing labor costs lead to much stronger effects on
staffing than when experience-based learning is taken into
account. By modeling pricing we are able to study the in-
teraction among learning, staffing levels and prices. The
results indicate that higher prices work best with smaller,
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specialized and thus more experienced salesforces while
lower prices correspond to larger, less specialized, and thus
less experienced salesforces.

By modeling a more complex routing of sales leads to
salespeople we obtain the result that, with learning, pool-
ing of workers may lead to optimal staffing levels that are
higher than when workers specialize. This contradicts the
conventional wisdom that the economy of scale provided by
pooling reduces staffing requirements. We also show that,
with learning, pooling using a hierarchical routing scheme
is always preferred to pure pooling that randomly assigns
leads to salespeople. Finally, in this paper, we use data col-
lected from the salesforce of a large manufacturer, and fit the
learning-curve and tenure-process parameters of the model
to this data.

While this paper has contributed to the literature it is not
without limitations. One extension of the current model
would be to add a cost for lost leads to the profit function.
Within the objective function of the model Equation (1),
including such a cost is equivalent to including some addi-
tional revenue for each sale, revenue that does not depend
upon the price. Therefore, a significant cost for each lost
lead would increase the value of throughput, increase the
significance of queueing economies of scale, and thus in-
crease the value of the hierarchical model over the specialist
approach.

There are additional limitations of the model that are op-
portunities for future research. One area of improvement
would be to model a N-product salesforce with more com-
plex spill-over effects. Another improvement to the realism
of the model would be to explicitly model how salespeo-
ple work multiple leads simultaneously rather than sequen-
tially. In doing this one could draw upon the literature on
the performance analysis of shared processors and polling
systems. It would also be interesting to allow the salesperson
to be a more active participant in the system, making both
effort and pricing decisions, as in agency theoretic mod-
els. We have modeled the arrival process as exogenous, but
in some environments, such as new or volatile markets in
which the customer base is growing or changing quickly, the
same salespeople are generating the leads and turning them
into sales. It would be interesting to model how salespeople
decide to allocate effort between generating leads and fol-
lowing leads up, within the context of a model of staffing
with learning effects. We recognize that this is not an easy
task because, among other complications, the service rates
of the salespeople would be endogenous.
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