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Abstract

Choice experiments designed to extend beyond the classic application of choice among
perfect substitutes have become popular in marketing research. In these experiments,
often referred to as menu based choice, respondents face choice sets that may comprise
substitutes, complements, and offers that provide utility independently, or any mixture
of these three types. The inferential challenge posed by data from such experiments is in
the calibration of utility functions that accommodate a mix of substitutes, complements,
and independent offers. Moreover, while a prior understanding of the product categories
under study may, for example, suggest that two offers in a set are essentially perfect
substitutes, this may not be true for all respondents. To address these challenges, we
combine Besag’s (1972, 1974) autologistic choice model with a flexible hierarchical prior
structure. We explain from first principles how the autologistic choice model improves on
the multivariate probit model, and on models that include cross-price effects in the util-
ity function. We develop Bayesian inference for the autologistic choice model, including
its intractable normalizing constant and find empirical support for our model in a menu
based conjoint experiment investigating demand for game consoles and accessories. We
illustrate implications for optimal pricing.

Keywords: menu based choice, choice modeling, autologistic choice model, hierar-
chical Bayes



1 Introduction

Menu based choice experiments (MBCEs) that extend beyond the case of choice among
perfect substitutes as in choice based conjoint (CBC) have become popular recently
(Liechty et al., 2001; Orme, 2010). In analogy to the choice of a starter, a main course
and a desert from a restaurant menu, MBCEs accommodate any combination of substi-
tutes, complements and independent offers in the choice sets, i.e., the menus presented
to respondents. As a consequence, the utility maximizing choice from such a choice set
may be a combination of the individual offers available in the choice set. The prototyp-
ical MBCE presents each respondent with multiple menus to choose from, varying the
prices or the availability of individual offers in the menus (Orme, 2010). The resulting
data is used to calibrate choice models designed to rationalize the choice of the vari-
ous combinations of individual offers from the menus. In turn, menu optimization then
proceeds based on the calibrated choice model. Typical optimization problems involve
determining profit maximizing prices of individual offers in a menu and more generally
which offers to include. A critical input to these optimization problems are measures of
demand interdependencies between offers in a menu.

Current modeling approaches account for demand interdependencies between offers in
a menu using correlated errors (Liechty et al., 2001) or by including selected cross-price
effects (Orme, 2010). A different approach that has not seen applications to MBCEs is
the autologistic choice model (ALCM) developed by Besag (1972; 1974) and introduced
into marketing by Russell and Petersen (2000).

We show, based on first principles, that the ALCM has important advantages over
extant models applied to MBCEs. Specifically, we show that correlated errors as well as
cross-price effects only provide a limited representation of complementarity and substitu-
tion between offers in a menu, with counterintuitive implications for optimal actions. We
then develop Bayesian inference for a hierarchical version of the ALCM including a prior
that supports strong utility dependencies, e.g., essentially perfect substitution among a
subset of offers, but allows for individual level departures.

On the computational side we develop a method to construct good proposal densities
based on approximate data augmentation that nevertheless maintains the detailed balance
conditions. The method facilitates Metropolis-Hastings sampling in situations where large
step sizes are required by construction of the model. We adopt the recently proposed
exchange algorithm (Möller et al., 2006; Murray et al., 2006) to circumvent the evaluation
of the normalizing constant in the ALCM’s likelihood that is computationally intractable
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in larger choice sets. We thus avoid using the common pseudo-likelihood that turns out
to be biased in our setting.

We apply our model to data from an MBCE designed to study demand for game
consoles and accessories by GfK. We find empirical evidence for the relevance of utility
dependencies because of substitution and complementarity in our data, demonstrate su-
perior predictive performance relative to extant models, and illustrate implications for
optimal pricing of offers in a menu.

In section 2 we review the ALCM and contrast it to the multivariate probit model
(Liechty et al., 2001) and to including cross-price effects in independent binomial logit
models (Orme, 2010). In section 3 we develop our hierarchical prior for the ALCM.
Section 4 presents the data along with estimation results. Section 5 discusses pricing
implications. We conclude with a summary and an outlook.

2 Models for Menu Based Choice

2.1 The Autologistic Choice Model

2.1.1 Definition and Characterization

Consider a menu containing k = 1, . . . , K offers. Restricting attention to binary choice of
individual offers as common in MBCEs, there are j = 1, . . . , J possible choice outcomes
where J = 2K . This includes choosing nothing, i.e., the outside good from the menu.
The ALCM puts a distribution on these choices.

One way to derive the model simply assumes that the choice among the J different
combinations of offers is multinomial logit:

P (j) = exp(f(j))∑J
h=1 exp(f(h))

, (1)

where f(j) is an essentially arbitrary characterization of the indirect utility associated
with combination j.

An alternative derivation is by Besag (1972) who originally proposed the ALCM for the
analysis of multivariate binary spatial data. His derivation is based on a causal argument
about the nature of interactions between sites on a spatial array. The argument states
that the conditional probability of an event at a focal site in the array only depends on
observable states of directly connected neighboring sites, i.e., on whether an event has
occurred at these sites or not, and possibly on non-spatial characteristics of the focal site.
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In our context, the array is the menu a respondent chooses from, events on the array are
choices of individual offers from the menu, and the connections between offers are due to
complementarity or substitution.

Besag shows that this causal argument alone, together with the requirement that a
proper joint distribution of events exists, implies (i) additive separability of f(j), (ii)
that conditional probabilities are in the form of logistic models, and that (iii) the joint
probability of a particular configuration of events is in multinomial logit form. Implication
(i) gives rise to indirect utility functions in the form of Equation 2.

f(j) =
∑
k∈j

βk + θ(j), f(j ≡ k) = βk (2)

Here βk is a parameter reflecting the attractiveness of, or utility from offer k, and θ(j)
measures the differential utility from the particular combination j of offers in the menu.
Economic reasons for this differential utility are utility dependencies among the offers in
j due to complementarity and substitution. Note that Equation 1 reduces to the familiar
multinomial logit model when all θ(j) approach negative infinity.

To further exemplify the argument, define j′ as that combination of offers that excludes
offer k, but is otherwise equal to j, i.e., j′ ≡ j \ k. From the ratio of the probability
of j, i.e., the joint probability of choosing combination j including k, to the marginal
probability of j′ with respect to k, we see that the conditional probability of choosing k
is in the form of a binomial logit model (Equation 3).

P (k|j′ ≡ j \ k) = exp(f(j))
exp(f(j′)) + exp(f(j)) = exp (βk + θ(j)− θ(j′))

1 + exp (βk + θ(j)− θ(j′)) (3)

Equation 3 can be interpreted as the probability of choosing offer k presented after
someone made choice j′ from a menu that did not feature offer k. Remarkably, this
conditional probability is independent of the attractiveness, and the substitutive or com-
plementary nature of rejected offers in this menu, and independent of the offer specific
attractiveness of conditioning arguments, i.e., independent of ∑l∈j′ βl given choice j′,
reflecting Besag’s (1972) original causal argument.

In Equation 3, the direct effect from choice j′ on the conditional choice probability of
k is (θ(j)−θ(j′)). If offers in j′ neither enhance nor subtract from the utility of k and vice
versa, i.e., if there is no utility connection between k and offers in j′, then θ(j) = θ(j′)
and P (k|j′) = P (k|¬j′) = P (k). If there is a connection between offers in j′ and k, and
offers in j′ collectively substitute k, then θ(j) < θ(j′) and thus θ(j) − θ(j′) < 0 . As an
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observable consequence, the probability of choosing k given choice j′ is smaller than the
probability of choosing k in the absence of j′. Finally, if offers in j′ complement k, then
θ(j) > θ(j′) and thus θ(j)− θ(j′) > 0 such that P (k|j′) > P (k|¬j′).

Closely related, the sign of (θ(j) − θ(j′)) determines the sign of the change in the
marginal probability of choosing k, defined in Equation 4, when changing the attrac-
tiveness of offers in j′. To obtain the marginal probability in Equation 4, we sum the
probabilities of choosing only k and that of choosing k together with j′, i.e., choosing j
from a menu that contains k and j′.

P (k) =
exp(βk) + exp(∑l∈j βl + θ(j))

1 + exp(βk) + exp(∑l∈j′ βl + θ(j′)) + exp(∑l∈j βl + θ(j)) (4)

The cross-derivative of this marginal probability with respect to the attractiveness
of offers in j′ in Equation 5 will be positive when (θ(j) − θ(j′)) > 0, i.e., when j′ and
k complement each other. In this case, increasing the attractiveness of offers in j′ will
increase the marginal probability of choosing k, and vice versa when (θ(j) − θ(j′)) < 0,
i.e., when j′ and k substitute each other.1

dP (k)
d
∑
l∈j′ βl

=
exp(∑l∈j βl + θ(j))− exp(∑l∈j′ βl + βk + θ(j′))

(1 + exp(βk) + exp(∑l∈j′ βl + θ(j′)) + exp(∑l∈j βl + θ(j)))2 (5)

As we will show further below, the multivariate probit model that was proposed as
an alternative for the analysis of MBCEs (Liechty et al., 2001) fails at capturing the
cross-derivates implied by substitution or complementarty between offers.

2.1.2 Specification

In a fixed menu of K offers the corresponding J = 2K choice probabilities—assuming we
have enough data to compute them directly—just identify the parameters in Equation
2 subject to a normalization required because ∑J

j=1 P (j) = 1. As customary in choice
models, we normalize the utility of the outside good to zero, i.e., set f(j ≡ ∅) = 0.
Therefore, the model so far does not impose any constraints on the choice probabilities
from a given menu. However, the model does constrain probabilities across choices from
various subsets of the K total offers because of the IIA-assumption in Equation 1.

Nevertheless, in but the smallest menus, an attempt to calibrate all j = 1, . . . , (J −1)
model parameters from observed choices is hopeless because the number of observations
is likely smaller than the number of parameters. For example, in a menu with K = 20

1Note that
∑

l∈j βl =
∑

l∈j′ βl + βk in the numerator of Equation 5.
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offers, we need data to estimate 220 = 1, 048, 576 choice probabilities to compute the
corresponding 220 − 1 parameters.

For additional structure and substantially more parsimony, we therefore define every
θ(j) as the sum of bivariate relationships among the offers that constitute choice j:

θ(j) =
K∑
k=1

K∑
k′=k+1

θk,k′I(k ∈ j)I(k′ ∈ j). (6)

Here I(arg) evaluates to one if arg is true and else to zero. This constraint reduces the
number of parameters to estimate from 2K−1 to (K2 +K)/2. The resulting model is still
extremely flexible in that every offer potentially interacts with every other offer in the
menu, but rules out higher order interactions. An example for a higher order interaction
are three individual offers that only become attractive when chosen together.

Under the constraint in Equation 6 it is useful to define the matrix Θ as

Θ =



0 θ2,1 . . . θK,1

θ2,1 0 . . .
...

... . . .
. . . θK,K−1

θK,1 . . . θK,K−1 0


(7)

and y(j) = [y1(j), . . . , yk(j), . . . , yK(j)]′ where yk(j) = 1 if k ∈ j else yk(j) = 0. Then
the double sum in Equation 6 can be more compactly expressed in matrix form as

K∑
k=1

K∑
k′=k+1

θk,k′I(k ∈ j)I(k′ ∈ j) = y(j)′ltr(Θ)y(j) (8)

where ltr is short for lower-triangular.
Many MBCE’s include utility shifters, such as e.g., prices of individual offers that

vary across menus as part of an experimental design. We follow the standard practice of
including price as ‘linear attribute’ in the (indirect) utility of individual offers:

βk = βk0 + βpricepk, (9)

Equation 9 implies a quasilinear utility specification for choices j = 1, . . . , J from a
menu (see Equation 2) from which income drops out. Therefore, the utility interactions
θk,k′ should be interpreted as interactions in direct utility. For example, a negative element
θk,k′ is negative because alternative k makes alternative k′ redundant, independent of the
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income consumed by purchasing k.

2.2 The Multivariate Probit Model

Liechty et al. (2001) proposed the multivariate probit model (MvP) as basic model for
data from MBCEs with the understanding that error correlations capture complementary
and substitutive relationships between offers in the menu. However, while error correla-
tions in the MvP can certainly reflect dependencies from complementarity or substitution,
the MvP fails at generating important implications from the economics of substitution and
complementarity. Most notably, all cross derivatives in the MvP, and thus all cross-price
elasticities are zero by definition of the model if the only connection between offer-specific
utilities is through correlated errors.

This property of the MvP is best illustrated using an example. Consider a menu
consisting of the two alternatives A and B with attractiveness or utility a and b, and
define the corresponding random utilities as zA and zB. Then the marginal probability
of choosing B from this two item menu is defined as P (zB > 0). Starting from the joint
distribution p(zA, zB), this probability corresponds to the following double integral:

P (B) =
∫∞

0
∫∞
−∞N


 zA

zB

 |
 a

b

 ,
 1 ρAB

ρAB 1


 dzAdzB

=
∫∞

0 N (zB|b, 1) dzB

(10)

where ρAB is the correlation between random utilities zA and zB. As obvious from the
last line of Equation 10, dP (B)/da = 0, i.e., the marginal share of B is independent
of the attractiveness of A for all latent utility correlations ρAB. This implication of the
MvP is inconsistent with the economics of substitution and complementarity that imply
decreasing (increasing) demand for the substitute (complement) B as the attractiveness
of A increases. It follows that in applications where a prior understanding of the offers
in a menu suggest that cross-derivatives are likely to be non-zero, e.g., that increasing
the price of offer k will shift demand from k to k′, an account that is based on correlated
errors only is inadequate (cf. Equation 5).

A related question is how to empirically distinguish between dependencies that arise
from utility correlations as in the MvP and utility interactions as in the ALCM. We
noted earlier that repeated choices from a fixed menu are sufficient to just identify the
ALCM parameters in Equation 2. In a menu comprised of only the two offers A and B,
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the data yield four probabilities P (A), P (B), P (A,B), and P (∅) that can identify three
linearly independent parameters. Thus, before invoking special cases such e.g., perfect
substitution between two individually attractive offers, both the ALCM and the MvP are
just identified and thus empirically indistinguishable in this example.

However, exogenous variation in the base-line probability of A or B will distinguish
between the ALCM and the MvP. Consider for example choices from three different
‘menus’ consisting of {A}, {B}, and {A,B}, respectively and note that the probability
of choosing, e.g., B from the menu consisting of only {A} is exogenously equal to zero.
According to the MvP, the marginal probability of choosing, e.g., A is independent of the
menu context, i.e., P (A|{A}) = P (A|{A,B}), see Equation 10. In contrast, the ALCM
will predict P (A|{A}) 6= P (A|{A,B}), unless there is no utility interaction between offers
A and B, i.e., θAB = 0 (see Equations 4 and 5). The same argument holds if there are
utility shifters that vary the attractiveness of individual offers in a menu exogenously.

Another related question is if correlations between latent utilities as in the MvP and
utility interactions as in the ALCM can be jointly identified. We will defer a thorough
answer to this question to future research. Gentzkow (2007) who estimates both utility
interactions and correlations for the two-alternative case of this model offers some dis-
cussion. In our application to MBCEs, substitution and complementarity together with
persistent heterogeneity are the first order concerns. We will leave the discussion of direct
utility interactions versus utility correlations at the level of model comparisons.

2.3 Cross-Price Effects

The current industry standard to handle demand dependencies among offers in MBCEs
is to include selected cross-price effects into the offers’ utility functions (Orme, 2010).
The random utility of offer k is specified as

uk = βk0 +
∑

k′∈(1,...,K)
βprice,k,k′pk′ + εk, εk ∼ Logistic (11)

resulting in independent binomial logit models for the K offers in a menu. The intuition
is that substitution leads to positive and complentarity to negative cross-price effects.

However, this approach suffers from two conceptual problems. First, the assumption
that offer k’s utility depends on the price of k′ independent of whether k′ is chosen or
not contradicts basic utility theory. As a practical consequence, optimization over prices
given parameters is bound to yield solutions that suggest to maximize demand for a
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high-margin offer by setting the price for substitutes to infinity, for common functional
forms of the cross-price effects. Second, and in contrast to aggregate demand models,
substitution and complementarity exert their influence on choices even in the absence of
price variation. Regardless of the estimated cross-price effects, the model in Equation 11
fails at generating substitution between offers whenever two substitutes are priced such
that their indirect utilities are equal. Last but not least, crossprice effects may even
fail to correctly reflect the sign of utility interactions, depending on the amount of price
variation in the data (see Appendix D for a numerical illustration).

We conclude that the ALCM has important theoretical advantages over the MvP
and independent binomial logit models that include cross-price effects (IndepCPE) as a
basic model for MBCEs. Next we develop Bayesian inference for this model including a
parsimonious prior for the utility interaction parameters in the ALCM.

3 Bayesian Inference

The ALCM described in the previous Section 2.1 implies the following individual i (i =
1, . . . , N) specific indirect utility function for choice j consisting of some combination of
offers from menu t (t = 1, . . . , T ) with a total of K offers:

fi,t(j) =
K∑
k=1

yk(j)(βk,i + βprice,ipk,t) + y(j)′ltr(Θi)y(j) (12)

Inference for the parameters in Equation 12 is challenging, and in particular in the
context of MBCEs. First, the normalizing constant of the likelihood in Equation 1 has
J = 2K terms and becomes prohibitively expensive to compute in larger menus. We
propose a solution to this problem enabling likelihood based Bayesian inference based
on the recently developed exchange algorithm (Möller et al., 2006; Murray et al., 2006).
Second, in MBCEs each of N respondents typically only make choices from a small set of
different menus, i.e., T is small and N >> T . Therefore it is natural to attempt inference
using a hierarchical model that pools information across respondents. Next we briefly
describe the exchange algorithm and then introduce our hierarchical prior.

3.1 The Exchange Algorithm

Define Yi =
(
y′i,1, . . . ,y′i,T

)
as the matrix of choices by individual i from T different

menus, where yi,t,k = 1 if individual i chooses offer k from menu t and else zero such that

8



each yi,t = y(j) for some j ∈ (1, . . . , J), and ϑi = (βi,Θi).
Denote by p (ϑi|Yi) the normalized posterior, P (yi,t|ϑi) the normalized likelihood

defined by Equations 1 and 12 with normalization constant nct (ϑi) (the denominator
in Equation 1) at the t-th observation, `∗ (yi,t|ϑi) the non-normalized likelihood (the
numerator in Equation 1), p (ϑi) as the prior and q (ϑi) as the proposal density. Then,
the exchange algorithm uses the following acceptance probability:

α (ϑi,Yi → ϑci ,Yc
i ) = min

1, p (ϑci) q (ϑi)
p (ϑi) q (ϑci)

T∏
t=1

`∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

T∏
t=1

`∗
(
yci,t|ϑi

)
`∗
(
yci,t|ϑci

)
 (13)

where yci,t ∼
`∗(yc

i,t|ϑ
c
i)

nct(ϑc
i) is obtained by ’Gibbsing through’ the corresponding set of condi-

tional distributions defined in Equation 3, or from perfect sampling, and without evalu-
ating nct (ϑci) (see Appendix A).

The key insight behind the exchange algorithm is that by expanding the MCMC-
state space from ϑi to (ϑi,Yi), the normalization constants nc1 (ϑi) , . . . , ncT (ϑi) and
nc1 (ϑci) , . . . , ncT (ϑci) cancel from the MH-acceptance ratio. We obtain the ’traditional’,
marginal MH-acceptance ratio by integrating out Yc

i :

α (ϑi → ϑci) = min

1, p (ϑci) q (ϑi)
p (ϑi) q (ϑci)

T∏
t=1

∫ `∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

`∗
(
yci,t|ϑi

)
`∗
(
yci,t|ϑci

) `∗
(
yci,t|ϑci

)
nct (ϑci)

dµ(yci,t)


= min

(
1, p (ϑci) q (ϑi)
p (ϑi) q (ϑci)

T∏
t=1

`∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

nct (ϑi)
nct (ϑci)

)

= min

(
1, p (ϑci) q (ϑi)
p (ϑi) q (ϑci)

T∏
t=1

P (yi,t|ϑci)
P (yi,t|ϑi)

)
(14)

While the relation between Equations 13 and 14 serves as an intuitive justification of
the exchange algorithm, we prove its detailed balance with respect to the normalized
posterior p (ϑi|Yi) in Appendix B.

Some may view the pseudo-likelihood (PL) proposed by Besag (1972) as a simple,
viable alternative. The PL conveniently approximates the joint likelihood function by
the product of full conditional distributions:

PL(ϑi) =
T∏
t=1

K∏
k=1

P (yi,t,k|ϑi,yi,t,−k)yi,t,k (1− P (yi,t,k|ϑi,yi,t,−k))(1−yi,t,k) (15)
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where P (yi,t,k|ϑi,yi,t,−k) is respondent i’s conditional choice probability of offer k in
menu t defined in Equation 3, and yi,t,−k is short for yi,t \ yi,t,k. The conditional choice
probabilities are in the form of binomial logits and their product is easily computed,
even for extremely large menus. For the special case of Θ = 0, but only for this special
case, we have that the product of conditional choice probabilities in Equation 15 yields
Equation 1.

In the presence of utility interactions, i.e., with Θ 6= 0, the PL is only large-sample
consistent (e.g., Särkkä, 1996; Zhao and Joe, 2005). Other authors report that the differ-
ence between PL and likelihood based inference is only in efficiency (Gong and Samaniego,
1981). However, the situation is somewhat more complicated in the context of a hier-
archical model. The successive conditioning on yi,t,−k inherent to the PL violates the
assumption of independence between the distribution of conditioning arguments and the
distribution of parameters across respondents. The resulting bias can be substantial (e.g.,
Manchanda et al., 2004; Liu et al., 2007).

3.2 Hierarchical Prior

The standard hierarchical prior formulation, i.e., a multivariate normal prior coupled
with the likelihood implied by Equations 1 and 12 is well suited for parameters (βi,1, . . . ,
βi,k, . . . , βi,K , βi,price) that characterize the attractiveness of individual offers. It is less
useful for inference about the utility-interaction parameters in Θi. The reason is hetero-
geneity in what respondents perceive to be perfect substitutes.

Recall that utility interactions θi,k,k′ in Θi measure interactions in direct utility. For
example, if respondent i receives no additional direct utility at all from offer k′ once he
chooses offer k and vice-versa, the corresponding parameter θi,k,k′ is negative infinity for
this respondent. However, if another respondent perceives horizontal differences between
offers k and k′ such that choosing k and k′ together becomes a possibility, θk,k′ for this
respondent is ‘infinitely’ larger than for respondent i.

The standard approach to accommodating such extreme forms of heterogeneity is to
use a hierarchical prior defined as a discrete mixture of distributions. In the following,
we develop a hierarchical prior for Θi based on this idea. However, we pool information
across individual elements θi,k,k′ based on a prior understanding of the nature of the
bi-variate interactions. Pooling across individual elements θi,k,k′ is necessary because of
the limited amount of likelihood information to inform individual parameters θi,k,k′ in
Θi. The individual level likelihood of a respondent’s choices across a (short) sequence of
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menus is maximized by setting all θi,k,k′ that correspond to offers that were never chosen
together to negative infinity, for example. The implication that all these pairs are perfect
substitutes to this respondent is likely to be wrong.

Our hierarchical prior classifies each element θi,k,k′ for all k = 1, . . . , K, k′ = k +
1, . . . , K, i = 1, . . . , N into one of three different ‘classes’ based on an ordinal-probit
regression. Equation 16 shows the ‘latent’ linear equation underlying the ordinal-probit
and Figure 1 depicts how the latent dependent variable zi,k,k′ in this regression maps
into the distinct classes denoted S, I, and C based on fixed truncation points at zero
and one. The class labels S, I, and C are intentionally chosen to relate to substitution,
independence, and complemenartiy. We will revisit this point below.

zi,k,k′ = w′k,k′δ + εi,k,k′ , εi,k,k′ ∼ N(0, σ2
ε ) (16)

0 1

S I C

zi,k,k′

Figure 1: Mapping from w′k,k′δ to θ-Classes

Prior knowledge about θi,k,k′ is encoded in the design vector wk,k′ . If a particular
bivariate interaction θi,k,k′ is a priori expected to be similar to that between k and k′′,
i.e., θi,k,k′ ' θi,k,k′′ for all i = 1, . . . , N , for example, then wk,k′ is equal to wk,k′′ . However,
the classification implied by the ordinal-probit model is probabilistic for all σ2

ε > 0 and
−∞ < w′k,k′δ < ∞, such that the likelihood information in a respondent’s choices may
result in a posterior classification of a particular element θi,k,k′ different from its (most
likely) prior classification.

Conditional on classifications of individual θk,k′,i, we specify hierarchical normal, in-
verse Gamma (N -IG) priors for the distribution of θ-elements in each class:

θ̄ ∼ N(0, a−1)

Vθ ∼ IG(ν, s)
(17)

To compensate for the limited individual level likelihood information and to regularize
our inference problem, we assume that θ-elements, given classifications, are (relatively)
tightly distributed around some location. For the S- and the C-class we essentially fix
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Vθ equal to one but use a diffuse prior for θ̄. For the I-class θ̄ is fixed at zero and Vθ

constrained to be practically zero.
To illustrate further, consider the following matrix of design vectors w′k,k′ :

W =



1 0 0
1 1 0
1 1 0
1 0 1
1 0 1



The columns correspond to coefficients δ in Equation 16, where the first coefficient is
a constant and the following coefficients measure departures from that constant. For
example, δ = (.5,−5, 6)′ implies that the θ-parameter corresponding to line one in the
matrix above, and all other θ-parameters with the same design vector, a priori most likely
connect two independent offers such that they should be zero (see Figure 1). For line two
and three in the matrix above, these δ-values imply that the corresponding θ-parameters
are similar, but different from zero. In principle, the likelihood will determine if they are
smaller (substitution) or larger than zero (complementarity). However, depending on the
prior knowledge about thus grouped θ-elements, the prior expectation in one of the two
directions will be strong.

For lines four and five in the matrix above these δ-values again imply that the cor-
responding θ-parameters are similar, different from zero, and likely different from the
θ-parameters corresponding to lines two and three. Again, the likelihood will determine
if they are smaller (substitution) or larger than zero (complementarity). And again, de-
pending on the prior knowledge about thus grouped θ-elements, the prior expectation in
one of the two directions will be strong. We envision that in most applications, prior in-
formation will be rich enough to both establish expected similarities among θ-parameters
as well as an expectation about the directional departure from zero for at least some of
the resulting groupings.

More formally, our hierarchical ordinal-probit model implies the following prior clas-
sification probabilities for θ-parameters depending on the corresponding w-vectors, and
parameters δ and σ2

ε in the hierarchical classification prior:

P (θi,k,k′ ∈ S|w′k,k′δ, σ2
ε ) =

∫ 0

−∞
N(zk,k′ |w′k,k′δ, σ2

ε )dz (18)
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P (θi,k,k′ ∈ I|w′k,k′δ, σ2
ε ) =

∫ 1

0
N(zk,k′ |w′k,k′δ, σ2

ε )dz (19)

P (θi,k,k′ ∈ C|w′k,k′δ, σ2
ε ) =

∫ +∞

1
N(zk,k′ |w′k,k′δ, σ2

ε )dz (20)

The hierarchical prior on individual elements θi,k,k′ established in Equations 16 through
20 has the following desirable properties: i) it allows a collection of θ-parameters believed
to be similar a priori to take extreme values such that they can e.g., reflect essentially
perfect substitution among a collection of offers in a menu, because ii) it does not impose
these extreme values for all respondents, as the posterior classification of an element θi,k,k′
may depart from its prior classification. Moreover, the posterior of the parameters in the
hierarchical classification prior, i.e., δ and σ2

ε in Equations 16 and 18 through 20 will re-
veal if the prior grouping of θ-parameters is supported by the data or not. For example,
δ 6= 0 coupled with small σ2

ε points to agreement between prior and posterior classifica-
tions. In summary, our adaptive prior anticipates concentrations of θ-parameters around
some negative value (θ̄(S)), at zero (θ̄(I) ≡ 0) and around some positive value (θ̄(C)).

A theoretical drawback of the prior developed above is that it allows offers to be clas-
sified as substitutes a posteriori even if the prior expectation is that they are complements
and vice-versa. In many applications such reclassifications will be regarded as a result of
overfitting the data. In this case it is useful to restrict the applicability of Equations 18
to 20 to a subset of θ-parameters, and to apply the following prior classification rules to
θ-parameters that are believed to connect substitutes, a priori:

P (θi,k,k′ ∈ S|w′k,k′δS, 1) =
∫ 0

−∞
N(zk,k′ |w′k,k′δS, 1)dz (21)

P (θi,k,k′ ∈ I|w′k,k′δS, 1) = 1− p(θi,k,k′ ∈ s|w′k,k′δS, 1) (22)

Equations 21 and 22 constrain the departure from the prior hypothesis of substitution
between two offers to independence and thus avoid the reclassification of prior substitutes
into posterior complements deterministically. Obviously, the same approach can be used
to avoid the reclassification of prior complements into posterior substitutes deterministi-
cally as well.

In our illustrative case study, we will refer to this restricted prior as ‘ALCMhet’ and
compare it to an ALCM where Θi ≡ Θ, i.e., all utility interactions are assumed to be
homogeneous. We will refer to this model as ‘ALCMhom’.
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We defer the details of Bayesian inference based on the hierarchical priors discussed
here to technical Appendix C. In this Appendix we develop approximate data aug-
mentation for this model while maintaining the detailed balance conditions to address
the problem of the large Metropolis-Hastings step-sizes that result from attempting to
reclassify individual interaction parameters θi,k,k′ .

4 Illustrative Case Study

4.1 Data

We illustrate our method using data from an MBCE featuring game consoles and console
accessories. The experiment was conducted in 2013 by GfK for strictly academic purposes,
however, mimicking typical client demands. Respondents were recruited from an on-
line panel and pre-screened for market-membership. If a prospective respondent had no
console at home and was unlikely to purchase one within the next year, the experiment
terminated after the screening questions. Overall, 575 respondents participated in the
MBCE who were ’in the market’ according to the screening questions. Table 1 summarizes
demographics of the sample used for estimation in our analysis. The median respondent
in our sample is male, about 42 years old, lives in a three-person household, and has a
high school degree. Overall, about 70% of respondents have at least one console among
the set Xbox360, Xbox, PS3, PS2, Wii, or WiiU at home, whereby 41% own exactly
one console, 19% two consoles, and 10% own more than two consoles. The remaining
respondents either do not own game consoles (26%) or do not use any of the consoles they
own any longer (4%). The average (median) console owner spends about 13 (6) hours a
week playing video games, with a standard deviation of about 20.

Table 2 summarizes the distribution of game genres played by respondents conditional
on the type of console owned. For example, 69% of respondents who own a PS3 console,
use it for playing action games. Fitness games appear to be particularly popular among
consumers who own a Nintendo console (Wii with 66% and WiiU with 62% compared
to other consoles between 9% and 29%). On the other hand, Nintendo consoles are used
less for playing adventure (Wii with 41% and WiiU with 33%) or racing games (Wii with
38% and WiiU with 29%). The differences between conditional game genre distributions
in Table 2 are suggestive of horizontal differentiation between different consoles.

In our experiment, each individual choice menu was designed in the form of a webshop,
where respondents could put products into an electronic shopping basket by clicking on
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Table 1: Sample Demographics

Variable Categories Percentage
Age ≤ 20 5.1

21-40 41.5
≥ 41 53.4

Gender female 42.8
male 57.2

HH size 1 Person 15.4
2 Persons 32.9
3 Persons 24.7
4 Persons 21
≥ 5 Persons 6

HH income <1000 3.5
(monthly, in Euros) 1000-2000 15.7

2000-3000 26.1
3000-4000 23.6
>4000 12.8
missing 18.3

Education primary/secondary 12.4
high school 57.2
college/university 30.4

Table 2: Game Genres

Action Adventure Racing Sports Fitness Strategy Other
PS3 .69 .59 .60 .48 .18 .30 .00
PS2 .51 .54 .54 .43 .09 .22 .09

Xbox .57 .52 .43 .38 .29 .43 .00
Xbox 360 .68 .60 .59 .51 .19 .30 .00

Wii .33 .41 .38 .50 .66 .16 .03
WiiU .52 .33 .29 .48 .62 .33 .05

them. The shopping basket always clearly displayed the total expenditure, i.e., the sum of
the prices of individual offers in the shopping basket to respondents. Respondents could
explicitly indicate that they would not even purchase a single offer from a particular menu
using an additional no-choice option. Each respondent was exposed to twelve menus and
clearly instructed to treat them independently. For each respondent we exlcuded two
menus from estimation for predictive validation. Each menu comprised the same thirteen
products, however at varying prices.

Products presented in each menu were from three different brands, i.e., Microsoft,
Sony, and Nintendo. The design included the following game consoles and game console
accessories: Xbox 360, Xbox One, PS3, PS4, Wii, Wii U, and Xbox Kinect, Xbox Wheel,
PS Eye Cam, PS Move, PS Wheel, Wii Wheel, and Wii Motion. The technical specifica-
tions of game consoles were constant across all menus, and respondents could instantly
retrieve the information on technical details in each menu by hovering the mouse over
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a particular offer. All consoles came with basic equipment, i.e., were usable without
purchasing additional offers. The prices of individual offers varied exogenously across
different menus.

In our data about 20% of respondents (122 out of 575) chose the outside option in
every choice set. We exclude these respondents from our analyses as their data is void
of information about relative preferences and substitution or complementarity among
offers in the menus. Thus, we rely on a sample of 453 respondents and 4530 choices
in total for estimation. Out of these 4530 choices, at least one item is chosen on 3403
occasions. 1669 choices contain at least two items from one menu, 613 choices at least
three items, and finally 190 choices more than three items. Table 3 details marginal and
bi-variate choice counts for the 13 products aggregated over respondents and repeated
measurements. For example, PS4 was chosen 1214 times in total and PS4 and PS Wheel
were chosen together 277 times, marginal with respect to other offer choices that may have
accompanied this pair. Inspection of the table reveals higher dependence between game
consoles and accessories of the same brand compared to other pairs of products. Moreover,
it is apparent that different consoles are sometimes chosen together and therefore are not
uniformly viewed as perfect substitutes. Respondents, who chose two or more consoles
together at least once spend more time on gaming than those who chose at most one
console from a menu with means (medians) of 16.9 (9) and 12.02 (5) hours per week,
respectively.

Table 3: Frequencies of (Pairwise) Choices

X
box

360

X
box

O
ne

X
box

K
inect

X
box

W
heel

PS3

PS4

PS
Eye

PS
M
ove

PS
W

heel

W
ii

W
iiU

W
iiW

heel

W
iiM

otion

Xbox 360 290
Xbox One 12 345

Xbox Kinect 67 62 222
Xbox Wheel 83 75 55 243

PS3 35 9 10 20 395
PS4 29 81 24 39 30 1214

PS Eye 12 20 31 24 69 215 402
PS Move 13 34 28 41 65 305 91 481
PS Wheel 16 27 13 48 67 277 112 158 432

Wii 42 14 28 32 34 43 26 17 20 538
Wii U 14 42 26 44 6 90 28 37 31 41 452

Wii Wheel 21 30 39 54 15 37 32 37 39 116 134 433
Wii Motion 31 35 35 48 25 64 40 55 46 238 201 193 634

We find that 29 respondents never chose a game console but only accessories from
the 10 menus used for estimation. All of them report to already have at least one game
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console among the set Xbox360, Xbox, PS3, PS2, Wii, or WiiU at home. 127 respondents,
at least once, only chose accessories from a menu. Of these, about 80% (101) report to
have a game console at home. Among the 297 respondents that never chose accessories
only from a menu, only about 68% (202) report to have a game console at home. We will
revisit this feature of our data below, when we explain the set of models we compare.

4.2 Models

In addition to the various ALCM specifications: ALCM with homogeneous Θ (AL-
CMhom), ALCM with heterogeneous Θ with informative prior (ALCMhet), and a version
of this model which includes inventory (ALCMhetInv) that we describe next, we include
three benchmark models in our empirical model comparison: an independence model ob-
tained from the ALCM by setting all utility interactions to zero (Indep), the multivariate
probit model (MvP) and an independence model with selected cross-price effects (Inde-
pCPE). We note that all models included in this comparison account for heterogeneity
in preferences for individual offers and the price parameter using a standard unrestricted
multivariate normal hierarchical prior. The models differ only in the way dependence
between offers in a menu is accounted for.

ALCMhet uses the following two rules in its hierarchical prior specification: i) utility
interactions, i.e., θ-parameters that connect two consoles are a priori similar to each other,
and expected to be negative. As an exception a particular interaction θk,k′,i may equal
zero, but cannot be positive; ii) utility interactions that connect a console to accessories
of the same brand are a priori similar and expected to be positive. As an exception a
particular interaction θk,k′,i may equal zero, but cannot be negative.

ALCMhetInv extends ALCMhet by additionally conditioning on whether at least one
console among the set Xbox360, Xbox, PS3, PS2, Wii, or WiiU is currently owned.
The technical implementation expands the choice vector yi,t = [y1,t, . . . , yK,t]′ by one
element to yi,t = [y1,t, . . . , yK,t, yi,inv]′, where yi,inv is respondent specific but takes the
same value for all t = 1, . . . , T menus a respondent chooses from. It takes the value 1 if
a respondent reported to own a console in the set Xbox360, Xbox, PS3, PS2, Wii, WiiU
and 0 otherwise. Correspondingly, we expand the matrix Θi for all i = 1, . . . , N by one
row and one column. The elements θi,K+1,k′ in this row (θi,k′,K+1 in this column) measure
substitution and complementarity between the game console at home and the offers in
the menus presented as part of our experiment. Elements θi,K+1,k′ that connect the game
consoles at home to consoles in a menu are a priori assumed to be similar and negative,
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in the same way as elements θi,k,k′ that connect consoles offered in a menu to each other.
We refrain from prior rule based (soft) classifications of θi,K+1,k′ that connect the game
console at home to accessories offered in a menu.

4.3 Results

Table 4 summarizes posterior means of alternative-specific constants and price-sensitivity
at the hierarchical prior level. Posterior standard deviations, i.e., ‘Bayesian standard
errors’ are reported in parentheses. The rank order of mean preferences across models is
mainly consistent. For example, newer versions of the game consoles (Xbox One, PS4,
and Wii U) deliver on average higher utility to respondents than older versions (Xbox 360,
PS3, and Wii) and consoles deliver higher stand-alone utility than accessories. However,
there exist a number of systematic differences between models.

Table 4: Price Sensitivity and Alternative Specific Constants - Hierarchical Prior Means

ALCMhet ALCMhet- ALCMhom Indep MvP IndepCPE
Inv

Price -0.34 -0.35 -0.30 -0.30 -0.13 -0.67
(0.02) (0.02) (0.02) (0.02) (0.01) (0.04)

Xbox 360 -0.20 2.38 -0.66 -2.05 -1.34 4.70
(0.32) (0.33) (0.31) (0.38) (0.19) (1.26)

Xbox One 3.67 6.42 2.43 0.63 0.37 8.88
(0.47) (0.45) (0.42) (0.50) (0.26) (1.10)

Xbox Kinect -3.33 -2.55 -2.48 -3.39 -2.20 4.23
(0.29) (0.34) (0.27) (0.35) (0.20) (0.75)

Xbox Wheel -4.39 -3.60 -4.56 -4.77 -2.78 5.33
(0.34) (0.30) (0.32) (0.45) (0.18) (0.86)

PS3 0.10 2.60 0.26 -1.24 -0.83 1.89
(0.35) (0.30) (0.28) (0.34) (0.16) (0.80)

PS4 5.13 7.88 4.08 3.60 1.77 12.69
(0.49) (0.60) (0.45) (0.54) (0.23) (1.03)

PS Eye -3.54 -3.06 -3.08 -3.04 -1.95 5.81
(0.25) (0.24) (0.20) (0.23) (0.13) (0.73)

PS Move -1.96 -1.60 -1.95 -1.88 -1.23 12.02
(0.26) (0.26) (0.25) (0.26) (0.14) (1.03)

PS Wheel -4.20 -3.75 -4.47 -4.04 -2.44 6.81
(0.25) (0.28) (0.29) (0.35) (0.19) (0.75)

Wii -0.59 1.68 -0.79 -1.97 -1.02 6.97
(0.44) (0.48) (0.37) (0.47) (0.22) (0.62)

Wii U 2.57 4.92 1.29 0.52 0.05 9.60
(0.42) (0.40) (0.43) (0.45) (0.26) (0.97)

Wii Wheel -4.33 -3.36 -3.57 -4.07 -2.24 5.40
(0.30) (0.27) (0.33) (0.37) (0.17) (0.64)

Wii Motion -3.23 -2.62 -2.99 -3.12 -1.86 6.03
(0.25) (0.24) (0.25) (0.29) (0.15) (0.59)

First, the Indep model, i.e., the version of the ALCM that constrains all utility inter-
actions to be zero, infers all game consoles to be less attractive than when utility inter-
actions are accounted for (compare Indep to ALCMhet, ALCMhetInv, and ALCMhom
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Table 5: Heterogeneity in Price Sensitivity and Alternative Specific Constants - Hierar-
chical Prior Standard Deviations

ALCMhet ALCMhet- ALCMhom Indep MvP IndepCPE
Inv

Price 0.33 0.35 0.30 0.31 0.10 0.66
(0.01) (0.02) (0.01) (0.01) (0.01) (0.03)

Xbox 360 4.38 4.26 3.79 4.42 2.23 4.82
(0.27) (0.28) (0.26) (0.31) (0.16) (0.79)

Xbox One 6.42 6.50 5.20 5.77 2.76 7.49
(0.50) (0.41) (0.42) (0.51) (0.21) (0.79)

Xbox Kinect 2.68 2.32 2.65 2.99 1.72 5.46
(0.25) (0.24) (0.23) (0.30) (0.15) (0.68)

Xbox Wheel 2.72 2.34 2.77 3.27 1.81 4.38
(0.29) (0.21) (0.25) (0.36) (0.15) (0.91)

PS3 4.81 4.68 3.90 4.33 2.16 7.78
(0.28) (0.33) (0.23) (0.29) (0.12) (0.96 )

PS4 8.71 9.25 7.43 8.29 3.81 11.86
(0.48) (0.52) (0.55) (0.56) (0.21) (0.99)

PS Eye 2.39 2.24 2.27 2.54 1.56 5.36
(0.24) (0.23) (0.17) (0.20) (0.11) (0.62)

PS Move 2.95 3.15 3.07 3.39 1.81 8.37
(0.23) (0.26) (0.22) (0.26) (0.12) (1.41)

PS Wheel 2.79 2.59 3.10 3.53 2.03 8.09
(0.20) (0.25) (0.25) (0.29) (0.16) (0.74)

Wii 5.44 5.44 4.94 6.00 2.74 7.58
(0.43) (0.31) (0.38) (0.51) (0.23) (0.73)

Wii U 5.62 6.25 5.22 6.03 2.83 7.90
(0.37) (0.40) (0.41) (0.47) (0.21) (1.01)

Wii Wheel 3.84 3.24 3.32 3.88 1.98 5.35
(0.31) (0.28) (0.31) (0.34) (0.15) (0.72)

Wii Motion 3.25 3.03 3.22 3.78 2.07 5.66
(0.25) (0.23) (0.23) (0.30) (0.16) (0.59)

in Table 4). Because Indep has no way to account for substitution between game con-
soles, it cannot but suppress the attractiveness of individual game consoles to rationalize
the observed data. Second, after accounting for individual inventory (ALCMhetInv), we
recover higher preferences for game consoles compared to versions of the ALCM that do
not. The explanation is again related to substitution. To the extent that game consoles
at home act as substitutes to game consoles offered in a menu, a model that does not
account for this effect will infer lower average population preferences for game consoles in
order to rationalize the observed data. Coefficients estimated by the MvP are absolutely
smaller because of the difference in error normalization in the probit and the logit model.
The coefficients estimated by IndepCPE cannot be directly compared because they refer
to preferences at hypothetical (cross-)prices of zero. Table 5 summarizes heterogeneity,
i.e., hierarchical prior standard deviations. The relatively larger amounts of preference-
heterogeneity inferred for Xbox One and PS4, essentially across all models stand out as
a substantively interesting result.
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Table 6: Demand Interactions between Game Consoles

ALCMhet ALCMhet- ALCMhom MvP IndepCPE
Inv → ←

Xbox 360-Xbox One -4.91 -4.09 -2.74 -0.03 0 0
(0.18) (0.12) (0.13) (0.05) (-) (-)

Xbox 360-PS3 -4.82 -4.04 -1.1 -0.17 -0.41 -0.57
(0.14) (0.12) (0.11) (0.07) (0.15) (0.11)

Xbox 360-PS4 -4.86 -4.14 -1.08 -0.27 0 -0.66
(0.15) (0.13) (0.1) (0.06) (-) (0.05)

Xbox 360-Wii -4.79 -4 -0.94 -0.02 -0.45 0
(0.16) (0.12) (0.04) (0.05) (0.07) (-)

Xbox 360-Wii U -4.89 -4.07 -1.23 -0.09 0 0
(0.17) (0.12) (0.13) (0.06) (-) (-)

Xbox One-PS3 -4.93 -4.1 -0.97 -0.15 0 -0.17
(0.17) (0.12) (0.05) (0.08) (-) (0.03)

Xbox One-PS4 -4.96 -4.19 -1.72 -0.34 -0.45 0
(0.16) (0.12) (0.04) (0.08) (0.04) (-)

Xbox One-Wii -4.91 -4.09 -0.95 -0.05 0 -0.41
(0.17) (0.12) (0.08) (0.04) (-) (0.08)

Xbox One-Wii U -4.87 -4.07 -0.85 -0.06 0 -0.62
(0.15) (0.12) (0.08) (0.08) (-) (0.05)

PS3-PS4 -5.08 -4.32 -3.03 -0.36 -0.34 0
(0.13) (0.11) (0.05) (0.05) (0.04) (-)

PS3-Wii -4.83 -4.09 -1.37 -0.24 -0.26 0
(0.15) (0.12) (0.05) (0.06) (0.08) (-)

PS3-Wii U -4.97 -4.15 -1.66 -0.36 0 0
(0.13) (0.12) (0.13) (0.08) (-) (-)

PS4-Wii -4.79 -4.04 -0.54 -0.12 0 0
(0.16) (0.1) (0.05) (0.08) (-) (-)

PS4-Wii U -4.81 -3.96 -0.91 0 0 -0.5
(0.16) (0.11) (0.06) (0.07) (-) (0.1)

Wii-Wii U -4.99 -4.13 -2.18 -0.15 -0.57 0
(0.15) (0.12) (0.11) (0.05) (0.03) (-)

Selected demand interactions and their different measures across different models are
summarized in Tables 6 and 7. Table 6 reports demand interactions between game con-
soles. Table 7 reports demand interactions between game consoles and accessories of the
same brand. For the heterogeneous versions of the ALCM we report posterior means
of selected elements of Ei(Θi), where Ei denotes the expectation across respondents. In
parentheses we report posterior standard deviations. As alternative measures for com-
parison, we report error correlations from the MvP as well as posterior means of average
cross-price effects from IndepCPE. Because cross-price effects need not be symmetric, we
report the effect from the offer on the left to the offer on the right in the first column of
Tables 6 and 7 in one column, and the effect in the other direction in next column.2

All versions of the ALCM infer strongly negative demand interactions among different
consoles on average (see columns 2 - 4 in Table 6). Interestingly, assuming homogeneity

2For the complete set of demand interactions and corresponding measures of heterogeneity (where
applicable) across different models, see Tables 18 to 25 in the online Appendix.
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Table 7: Demand Interactions between Game Consoles and Accessories of the Same Brand

ALCMhet ALCMhet- ALCMhom MvP IndepCPE
Inv → ←

Xbox 360-Xbox Kinect 1.15 1.26 1.57 0.51 -0.57 -1.03
(0.12) (0.11) (0.07) (0.05) (0.09) (0.07)

Xbox 360-Xbox Wheel 1.23 1.35 2.32 0.45 -0.46 0
(0.1) (0.12) (0.05) (0.06) (0.24) (-)

Xbox One-Xbox Kinect 1.04 1.23 0.87 0.38 0 0
(0.1) (0.12) (0.1) (0.05) (-) (-)

Xbox One-Xbox Wheel 1.14 1.31 1.84 0.47 0 0
(0.09) (0.11) (0.05) (0.06) (-) (-)

PS3-PS Eye 0.95 1.16 0.43 0.09 0 0
(0.12) (0.11) (0.08) (0.06) (-) (-)

PS3-PS Move 1.02 1.16 0.89 0.21 0 0
(0.09) (0.1) (0.06) (0.07) (-) (-)

PS3-PS Wheel 1.06 1.18 1.19 0.2 -0.55 0
(0.09) (0.11) (0.05) (0.06) (0.19) (-)

PS4-PS Eye 1.15 1.28 1.41 0.4 0 -0.37
(0.11) (0.09) (0.08) (0.05) (-) (0.06)

PS4-PS Move 1.26 1.37 1.73 0.53 0 0
(0.09) (0.11) (0.09) (0.04) (-) (-)

PS4-PS Wheel 1.2 1.36 1.69 0.5 0 0
(0.11) (0.09) (0.05) (0.05) (-) (-)

Wii-Wii Wheel 1.02 1.17 0.57 0.39 0 0
(0.1) (0.1) (0.09) (0.05) (-) (-)

Wii-Wii Motion 1.18 1.33 1.22 0.48 0 0
(0.1) (0.1) (0.05) (0.04) (-) (-)

Wii U-Wii Wheel 1.11 1.26 0.94 0.39 0 -0.32
(0.1) (0.08) (0.13) (0.05) (-) (0.07)

Wii U-Wii Motion 1.25 1.35 2.01 0.51 0 -0.53
(0.09) (0.1) (0.07) (0.04) (-) (0.04)

in these interactions across respondents leads to relatively weaker interactions between
consoles (see column "ALCMhom" versus columns 2 and 3 in Table 6). Although the error
correlation in the MvP reflect the sign on of these negative interactions, only seven out
of fifteen are credibly different from zero (see column five in Table 6). Finally, posterior
means of selected average cross-price effects reported in columns 6 and 7 of Table 6 lack
face validity.3 All estimated cross-price effects between consoles are credibly negative on
average, suggesting that this model is misspecified. We further characterize the nature
of this misspecification in Appendix D.

In terms of interactions between consoles and accessories carrying the same brand,
all models agree directionally (see Table 7). All versions of the ALCM infer credibly
positive demand interactions on average. Similarly, all error correlations in the MvP but
one (PS3-PS Eye), as well as all estimated cross-price effects in IndepCPE are credibly
positive and negative, respectively.

3Cross-price effects to estimate in IndepCPE were chosen following the MBC industry guidelines
(Orme, 2013). These guidelines suggest to retain cross-price effects based on the statistical significance
of cross-price dependencies established in aggregate count analyses.
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ALCMhet and ALCMhetInv both rely on a hierarchical prior distribution for indi-
vidual utility interactions (see Subsection 3.2). Table 8 summarizes the posterior of the
hierarchical prior parameters that characterize the distribution of θ-elements classified
as connecting independent (I), substitutive (S), and complementary (C) offers. Table
9 reports posterior means of hierarchical prior classification probabilities for θ-elements
into the three classes I, S, and C for both models. Together Tables 8 and 9 strongly
suggest that utility interactions are relevant for choices from the menus in our exper-
iment. For both models, the posterior means of θ̄(S) and θ̄(C) are sizable, relative to
alternative specific constants in Table 4, and well separated from θ̄(I) ≡ 0, even after
taking heterogeneity (Vθ) into account.

The posterior means of hierarchical prior classification probabilities in Table 9 vary
by (soft) rule, and in the expected directions. This supports the usefulness of these rules
as a basis for probabilistically structuring the extremely high dimensional posterior of
θ-elements. For example, an element θi,k,k′ connecting two consoles in ALCMhet a priori
belongs to the substitute class with a probability of about 76%, and an element connecting
a console to an accessory of the same brand a priori belongs to the complement class with
a probability of about 22%.

Table 8: Substitution and Complementarity - Posterior Means and Variance of Hierar-
chical Prior Parameters

Model Means (θ̄) Variance (Vθ)
I S C I S C

ALCMhet -0.01 -6.46 5.25 0.09 1.05 1.01
(0.01) (0.08) (0.13) (0.00) (0.05) (0.04)

ALCMhetInv 0.00 -5.40 4.67 0.08 0.98 1.02
(0.01) (0.04) (0.09) (0.00) (0.04) (0.04)

Table 9: Prior Classification Probabilities

ALCMhet ALCMhetInv
baseline 2 consoles console baseline 2 consoles console

own accessory own accessory
Prob of I in % 75.63 24.27 78.38 67.59 24.24 72.93
Prob of S in % 23.32 75.73 0 30.78 75.76 0
Prob of C in % 1.05 0 21.62 1.63 0 27.07

Finally, we report selected preference correlations in the population of respondents
across different models. Table 10 summarizes preference correlations between game con-
soles, and Table 11 preference correlations between game consoles and accessories carrying
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Table 10: Correlations in Individual Preferences for Game Consoles

ALCMhet ALCMhet- ALCMhom Indep MvP IndepCPE
Inv

Xbox 360-Xbox One 0.45 0.57 0.51 0.38 0.36 0.92
(0.07) (0.08) (0.08) (0.1) (0.08) (0.03)

Xbox 360-PS3 0.87 0.92 0.81 0.74 0.67 0.93
(0.02) (0.02) (0.03) (0.04) (0.05) (0.03)

Xbox 360-PS4 0.4 0.56 0.3 0.05 0.1 0.92
(0.07) (0.09) (0.08) (0.09) (0.08) (0.05)

Xbox 360-Wii 0.63 0.72 0.54 0.49 0.44 0.92
(0.06) (0.05) (0.07) (0.07) (0.07) (0.04)

Xbox 360-Wii U 0.26 0.59 0.29 0.13 0.13 0.93
(0.08) (0.08) (0.1) (0.1) (0.09) (0.03)

Xbox One-PS3 0.32 0.57 0.35 0.12 0.19 0.96
(0.1) (0.07) (0.09) (0.1) (0.09) (0.02)

Xbox One-PS4 0.78 0.91 0.73 0.56 0.5 0.95
(0.04) (0.02) (0.05) (0.08) (0.07) (0.03)

Xbox One-Wii 0.1 0.23 -0.11 -0.22 0 0.96
(0.12) (0.1) (0.1) (0.13) (0.09) (0.02)

Xbox One-Wii U 0.63 0.76 0.49 0.4 0.39 0.96
(0.06) (0.04) (0.08) (0.1) (0.09) (0.02)

PS3-PS4 0.47 0.63 0.45 0.22 0.24 0.96
(0.06) (0.07) (0.07) (0.08) (0.07) (0.02)

PS3-Wii 0.59 0.65 0.52 0.45 0.4 0.96
(0.06) (0.06) (0.07) (0.07) (0.06) (0.02)

PS3-Wii U 0.24 0.51 0.21 0.02 0.06 0.96
(0.09) (0.07) (0.1) (0.1) (0.09) (0.01)

PS4-Wii -0.02 0.15 -0.16 -0.27 -0.18 0.96
(0.08) (0.13) (0.09) (0.08) (0.07) (0.04)

PS4-Wii U 0.52 0.61 0.36 0.2 0.23 0.96
(0.07) (0.06) (0.08) (0.08) (0.08) (0.03)

Wii-Wii U 0.5 0.62 0.46 0.41 0.38 0.96
(0.09) (0.09) (0.08) (0.08) (0.07) (0.02)

the same brand. Posterior standard deviations are in parentheses.4

Table 10 shows that preference correlations between consoles are generally suppressed
when substitution between consoles is not modeled (compare columns 2 - 4 [ALCMs] to
columns 5 [Indep] and 6 [MvP]). A higher preference correlation between two consoles
in the ALCMs can be explained by the fact that some respondents actually like both
consoles more than other respondents (high βi), but are unlikely to choose them together
from a menu because of substitution. Because Indep and MvP do not (sufficiently) cap-
ture this substitution effect, these models compensate by biasing preference correlations
downwards. For the same structural reason Indep and MvP in general overstate the
preference correlation between consoles and console accessories carrying the same brand
(see Table 11). Finally, the extreme preference correlation inferred by IndepCPE in col-
umn 7 likely are spurious results from extrapolating into a choice set where all prices

4See Tables 26 to 31 in the online Appendix for the complete set of preference correlations in all
models.
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Table 11: Correlations in Individual Preferences for Game Consoles and Accessories of
the Same Brand

ALCMhet ALCMhet- ALCMhom Indep MvP IndepCPE
Inv

Xbox 360-Xbox Kinect 0.19 0.28 0.29 0.53 0.42 0.9
(0.11) (0.12) (0.08) (0.07) (0.08) (0.04)

Xbox 360-Xbox Wheel 0.17 0.32 0.26 0.48 0.41 0.88
(0.09) (0.1) (0.08) (0.07) (0.07) (0.06)

Xbox One-Xbox Kinect 0.24 0.25 0.34 0.41 0.31 0.93
(0.11) (0.12) (0.09) (0.1) (0.09) (0.03)

Xbox One-Xbox Wheel 0.04 0.03 0.08 0.2 0.14 0.9
(0.1) (0.1) (0.1) (0.09) (0.09) (0.05)

PS3-PS Eye 0.19 0.27 0.28 0.31 0.23 0.94
(0.11) (0.08) (0.08) (0.08) (0.07) (0.02)

PS3-PS Move 0.2 0.27 0.23 0.28 0.23 0.96
(0.08) (0.1) (0.08) (0.08) (0.07) (0.02)

PS3-PS Wheel 0.06 0.21 0.17 0.24 0.16 0.96
(0.09) (0.09) (0.08) (0.08) (0.07) (0.02)

PS4-PS Eye 0.11 0.15 0.08 0.36 0.28 0.94
(0.09) (0.09) (0.08) (0.06) (0.07) (0.02)

PS4-PS Move 0.48 0.46 0.34 0.6 0.51 0.97
(0.06) (0.08) (0.07) (0.05) (0.05) (0.01)

PS4-PS Wheel 0.22 0.21 0.22 0.46 0.37 0.97
(0.09) (0.08) (0.07) (0.06) (0.07) (0.01)

Wii-Wii Wheel 0.48 0.51 0.44 0.53 0.46 0.92
(0.06) (0.07) (0.07) (0.06) (0.07) (0.05)

Wii-Wii Motion 0.59 0.65 0.6 0.69 0.61 0.94
(0.06) (0.06) (0.05) (0.04) (0.05) (0.02)

Wii U-Wii Wheel 0.31 0.41 0.37 0.53 0.43 0.93
(0.09) (0.08) (0.08) (0.07) (0.07) (0.04)

Wii U-Wii Motion 0.46 0.52 0.42 0.61 0.51 0.95
(0.07) (0.07) (0.08) (0.05) (0.06) (0.02)

are zero. Overall, it appears that if a model measures demand interdependencies incor-
rectly, or does not account for such interdependencies at all, correlations in individual
preferences for substitutes will be underestimated, whereas correlations in preferences for
complements will be overestimated.

4.4 Predictive Performance

Predictive performance is measured by hit rate (HR) and log predictive likelihood (LPL).
We differentiate between marginal and menu HR. The former is defined as the proportion
of correctly predicted choices of items or individual offers in a menu (marginal HR),
whereas the later is defined as a proportion of correctly predicted choice combinations
(menu HR). For example, if an individual chooses {A,B} out of a menu {A,B,C} and we
predict {A-chosen, B-chosen, C-not chosen}, we declare it as three hits for marginal HR
and as one hit for menu HR. However, if we predict e.g., {A-chosen, B-chosen, C-chosen},
we count this as two hits and one miss for marginal HR, and as a miss for menu HR,

24



although the choice of {A,B} was predicted correctly. Since HR treats the case with
predicted probability of 0.51 to be the same as 0.99, it is difficult to say which model is
more precise in its prediction. LPL overcomes this problem. LPL of observing the data
can be expressed as

LPL =
N∑
i=1

K∑
k=1

T∑
t=1

yi,t,klog(p̂i,t,k) + (1− yi,t,k)log(1− p̂i,t,k) (23)

where p̂i,t,k is the estimated marginal probability of choosing item k in menu t by indi-
vidual i, and yi,t,k represents the realized choice of item k in menu t by individual i. To
obtain p̂i,t,k, we compute the marginal probability p̂i,t,k at each draw of the posterior dis-
tribution of parameters by Gibbs-sampling from the set of conditional probabilities that
define the pseudo-likelihood (see Appendix A), and then take the average over posterior
draws of parameters. Thus, we do not condition on holdout choices in any way making
our predictions. The closer LPL to zero, the better the predictive performance of the
model.

Table 12 summarizes predictive performance of the models we compare in our two
holdout menus. We do not find substantial differences between models in marginal HR
(1&0), which is in the range between 93 and 94%. This can be explained by the prevalence
of zeros in each choice, i.e., only a relatively small number of items are chosen from
each menu. Decomposing marginal HR into predictions of choices (marginal HR 1) and
predictions of prevalent non-choices (marginal HR 0), we find that the heterogenous
ALCMs outperform MvP in predicting marginal choices by about 4 percentage points.
IndepCPE also performs well in terms of marginal HR 1, but is not on par with ALCMhet
in terms of LPL. Overall, ALCMhet yields the most precise marginal predictions. As such,
the LPL of ALCMhet is -1919, compared to, e.g., the LPL of IndepCPE at -2376, being
the least precise model.

However, the crucial question in the analysis of data from MBCEs is how well a model
predicts joint outcomes, i.e., actually chosen offer combinations. Column 5 in Table 12
(menu HR overall) shows that MvP, Indep and IndepCPE are not competitive in terms
of menu HR, trailing the performance of ALCMs that account for heterogeneity in utility
interactions by about 4 to 5%. An approximate standard error for the hit rates in this
column is 0.017.

Interestingly, ALCMhom, which estimates homogeneous Θ across individuals, per-
forms relatively better too, suggesting that utility interactions in the ALCM capture
demand interdependencies present in our data better than the error correlations in the

25



multivariate probit model. Unfortunately, we cannot compute the LPL for our menu
predictions because of the difficulty of evaluating the likelihood that motivated the use
of the exchange algorithm for inference earlier.5

Table 12: Predictive Performance - Holdout Choices

Model Marginal HR Menu HR
1 & 0 1 0 overall none 1 item > 1 item

ALCMhet 0.936 0.585 0.980 0.575 0.876 0.512 0.468
(-1919) (-1182) (-737)

ALCMhetInv 0.937 0.586 0.981 0.578 0.876 0.544 0.446
(-2138) (-1451) (-687)

ALCMhom 0.938 0.555 0.985 0.555 0.891 0.532 0.391
(-1921) (-1193) (-728)

Indep 0.937 0.555 0.985 0.531 0.905 0.520 0.332
(-1919) (-1204) (-714)

MvP 0.937 0.539 0.986 0.538 0.896 0.517 0.357
(-1928) (-1220) (-709)

IndepCPE 0.935 0.590 0.977 0.528 0.836 0.538 0.346
(-2376) (-1727) (-650)

Finally, we assess how well different models predict menu outcomes, depending on
how many items were chosen in a menu. Columns 6-8 of the Table 12 summarize the
results and compare menu HRs for none-choices, one-item, and multiple-item choices.
We find that whereas the baseline models are competitive in predicting none and one-
item choices, they are clearly inferior in terms of predicting multiple-item purchases. For
instance, ALCMhet predicts 46.8% of the multiple-item choices correctly, whereas MvP
only 35.7%, resulting in a relative improvement of 30%. An approximate standard error
for the multiple item choice hit rates is 0.027.

5 Pricing Implications

A simple model that ignores demand interdependencies might sometimes be sufficient to
make good local predictions. The choice of the model becomes more important when a
manager is to draw inferences about optimal actions. Next, we illustrate how optimal
pricing patterns for complements and substitutes differ from those for independently val-
ued products under different model assumptions. We use the posterior obtained under
different ALCM versions, as well as that from baseline models, solve a given optimization

5When simulating menu-choices to estimate probabilities for the 213 = 8192 pontential choices from
each menu as relative frequencies, there is always a chance that we obtain a probability of zero for a
particular observed response because of the numerical constraints of simulation.
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problem and compare the results. We find that accounting for substitution and comple-
mentarity among offers in a menu results in different optimal prices for products, in line
with economic intuition.

For illustration, consider a monopolistic situation in which Sony optimizes prices
for its products (PS3, PS4, PS Eye Cam, PS Move, and PS Wheel), given the com-
petitor’s products (Nintendo’s Wii, Wii U, Wii Wheel, Wii Motion and Microsoft’s
Xbox 360, Xbox One, Xbox Kinect, Xbox Wheel) and prices in the market. Assuming
marginal costs—set to zero without loss of generality—we define a five-dimensional grid
of possible prices for Sony products ([69, 95, 99, 105, 169] for PS3, [199, 245, 249, 269, 299]
for PS4, [19, 39, 99, 119, 139] for PS Eye Cam, [39, 59, 99, 109, 119] for PS Move, and
[29, 39, 79, 99, 119] for PS Wheel, all prices in Euros) and compute revenues for each price
combination. We compute revenues for each individual in the sample based on posterior
draws of individual parameters, βi and Θi. We average over the draws of individual
choice shares, compute individual revenues, then sum over all individuals, and, finally,
find the price combination that maximizes the overall revenue.

Table 13 reports revenue maximizing price vectors from different models. Indep and
MvP, which do not account for utility interactions, price accessories too high, relative to
the optimal prices for accessories from the different ALCMs. IndepCPE, which includes
cross-price effects, yields even higher optimal prices for PS Eye Cam and PS Move.
We also see that ALCMs, and especially the two ALCMs with a structured account
of heterogeneity in utility interactions yield relatively higher optimal prices for the two
consoles PS3 and PS4.

Table 13: Optimal Pricing

Model PS3 PS4 Eye Cam Move Wheel
ALCMhet 105 245 39 59 39

ALCMhetInv 105 245 39 59 39
ALCMhom 99 245 39 59 39

Indep 95 245 99 99 79
MvP 95 245 119 99 119

IndepCPE 69 199 139 119 29

The pattern in the optimal price vectors across different models showcases an im-
portant managerial implication of accounting for substitution and complementarity. The
complementarity between accessories and game consoles captured by the ALCMs leads to
lower prices for accessories. The relatively higher prices for consoles from these models—
despite the complementarity to accessories—comes through strong substitution between
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PS3 and PS4. Whereas Indep and MvP predict that lower prices for PS3 and PS4 may
likely result in a joint purchase, the ALCMs correctly recognize that this is an outlying
event.

Table 14 reports market shares at revenue maximizing prices. The first 6 lines in Table
14 show market shares computed using the ALCMhet, in turn conditioned on revenue
maximizing prices from the different models fitted. The following lines report shares
computed using the models indicated in the first column at the optimal prices implied
by that same model.

High optimal accessory prices recommended by the baseline models Indep and MvP
(see Table 13) result in much lower market shares for accessories compared to those
obtained from optimization based on the ALCMs in Table 14. However, Indep and MvP
tend to underestimate these shares (see lines "Indep" and "MvP"), presumably because
these models do not account for the complementarity between consoles and accessories.
IndepCPE suggests extremely high prices for Eye Cam and Move and relatively low prices
for the two consoles (see Table 13). It vastly overestimates the shares of PS4 and Move
at these prices (compare lines "ALCMhet at IndepCPE" and "IndepCPE" in Table 14).
Finally, if a manager sets optimal prices suggested by IndepCPE, MvP, and Indep in
this scenario, the loss in revenues relative to ALCMhet is 5.65%, 3.53%, and 2.10%,
respectively.

Table 14: Market Shares

Model PS3 PS4 Eye Cam Move Wheel
ALCMhet 17.4 35.0 10.2 19.6 11.3

ALCMhet at ALCMhetInv 17.4 35.0 10.2 19.6 11.3
ALCMhet at ALCMhom 19.7 34.6 10.5 19.8 11.4

ALCMhet at Indep 17.8 33.1 5.0 13.0 7.0
ALCMhet at MvP 17.4 32.8 4.1 13.0 4.4

ALCMhet at IndepCPE 22.3 39.8 3.7 11.4 13.7
ALCMhetInv 17.0 34.8 9.8 19.0 11.1
ALCMhom 17.8 34.2 9.5 18.6 10.7

Indep 17.6 33.7 3.8 9.8 5.3
MvP 16.6 33.2 3.7 9.9 4.1

IndepCPE 21.6 43.6 4.1 21.0 16.5

Next, we demonstrate how different models react to price changes in the market. We
cut the prices of the competitive Microsoft and Nintendo offers in half and reoptimize the
prices for Sony products following the procedure described earlier. Table 15 summarizes
the resulting price changes. For example, before the competitive price cut, ALCMhet
suggested a price of 245 for PS4 (see Table 13). After the competitive price cut, ALCMhet
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suggests to lower this price by 46 to 199.
ALCMhet, ALCMhetInv and ALCMhom imply to lower prices for PS game consoles,

and especially those of PS4. Whith the exception of PS Move under ALCMhom, ac-
cessory prices are not adjusted. IndepCPE reacts to the price changes too, but only by
a small adjustment to the price of PS3. By definition, optimal prices are independent
of competitors’ prices in Indep that sets all demand interdependencies to zero and thus
optimal prices stay the same. However, it may come as a surprise that the same holds for
the MvP, as explained analytically in Section 2.2 (see Equation 10). Finally, if a manager
sets optimal prices suggested by IndepCPE, MvP, and Indep under this competitive sce-
nario, the loss in revenues relative to ALMChet amounts to 5.61 %, 6.15%, and 5.13%,
respectively.

Table 15: Optimal Pricing - Reaction to Price Changes in the Market (∆p)

Model PS3 PS4 Eye Cam Move Wheel
ALCMhet -10 -46 0 0 0

ALCMhetInv -36 -46 0 0 0
ALCMhom -4 -46 0 -10 0

Indep 0 0 0 0 0
MvP 0 0 0 0 0

IndepCPE -10 0 0 0 0

Thus, if and in what way demand interdependencies are modeled matters for pricing
decisions. Given that the ALCM, especially when coupled with a structured account of
heterogeneity, is better supported by the data than Indep, MvP or IndepCPE, and the
intuitive differences between optimal price vectors from different models, we conclude
that an ALCM coupled with a structured account of heterogeneity will result in better
pricing decisions in this and similar applications.

6 Discussion

Studies that involve choices from menus have been gaining increased popularity. Given
that consumers often face menu-like purchase situations and are commonly allowed to
customize products and services, this is not surprising. Consumers’ decisions in this case
extend beyond the well studied situation of choice among perfect substitutes.

In this paper, we propose the ALCM as a utility-based framework to handle the
combination of substitutes and complements likely to be present in many menus.

The parsimonious but flexible prior structure we develop captures extreme heterogene-
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ity in two-way utility interactions. Such extreme heterogeneity in the form of ’infinite
differences’ between consumers occur in populations where some consumers perceive two
offers to be perfect substitutes and others view the same two offers as horizontally differ-
entiated.

We illustrate our methodology through an application to data from an industry grade
MBCE study eliciting demand for game consoles and accessories, designed by GfK for
academic purposes. We find strong empirical evidence of substitution and complemen-
tarity between offers in our experiment. In this context we show how to use information
about respondents’ inventory as conditioning argument that exerts its influence on ob-
served choices via substitution or complementarity with inside offers. We believe that
this is a more theoretically appealing way of bringing knowledge about inventory into the
model than using inventory as a covariate to inherent preferences.

We show that approximations to utility interactions based on correlated errors as in
the multivariate probit model, or through cross-price effects result in inferior predictive fit,
especially when predicting choices that comprise more than one menu item. Importantly,
we document that the inferences from extant models result in counterintuitive pricing
decisions and lower revenues.

We trace the worse performance of extant models, i.e., the multivariate probit and
the binomial logit model that includes cross-prices effects to the failure of generating
important implications from the economics of substitution and complementarity. Specif-
ically, we show analytically that the error correlations in the multivariate probit model
can reflect substitution and complementarity between offers in a menu. However, when
the indirect utility of substitutes and complements changes, error correlations fail at
generating the implied change in marginal shares of a target offering.

The binomial logit model that includes cross-price effects attempts to capture substi-
tution through positive, and complementarity through negative cross-price effects. How-
ever, substitution and complementarity exert their influence on individual choices even in
the absence of price variation. And in those instances where price variation is sufficient
for cross-price effects to pick up and reflect substitutive and complementary relation-
ships, cross-price effects fail at generating substitution between offers whenever prices of
substitutes equate their indirect utilities.

On the technical side we develop Bayesian inference for the ALCM leveraging the
recently proposed exchange algorithm in combination with perfect sampling of data from
the ALCM to overcome the problem of a computationally intractable normalizing con-
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stant in the likelihood. We also develop an auxiliary data augmentation scheme to enable
effective joint proposals of highly correlated parameters while maintaining the detailed
balance conditions.

While we believe that the advantages of the ALCM over extant models for choices from
menus are apparent from our paper, there is certainly room for additional development.
First, like all extant models in this context, the suggested modeling framework ignores
income effects. Second, the ALCM in its current implementation is limited to two-way
utility interactions. Depending on the application, selected higher order interactions may
also be important. However, the development of a prior that adaptively selects relevant,
potentially heterogenous higher order interactions involves substantial theoretical and
algorithmic development, given the enormous search space implied that we leave to future
research.
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A Sampling Yc
i

The exchange algorithm requires that we sample from Equation 1. Direct sampling
requires evaluating the normalizing constant nct (ϑci) which the exchange algorithm is
designed to avoid.

One way to obtain draws of yi,t without evaluating nct (ϑci) is to ’Gibbs-through’
the conditional distributions defined in Equation 3. Because these conditional distribu-
tions are in binomial logit form, probabilities can be computed fast. The Gibbs-sampler
updates elements in yi,t = (yi,t,1, . . . , yi,t,k, . . . , yi,t,K) one at a time conditional on yi,t,−k.

1. Initialize y(m−1)
i,t as the observed vector of choices.

2. Sample from yi,t,k ∼ Bernoulli
(
P (yi,t,k|ϑci ,y

(m−1)
i,t,−k )

)
3. Replace the k-th element in y(m−1)

i,t by the draw just obtained and proceed to gen-
erating yi,t,k+1 as in step number 2. Repeat steps 2 and 3 until all K elements in
y(m−1)
i,t have been updated. Then set y(m)

i,t = y(m−1)
i,t . This completes one Gibbs

cycle.

4. Return to step 2 until convergence from the initial condition.

A drawback of this approach is that it remains unclear how often the Gibbs-cylce needs to
be repeated before a draw equivalent to direct sampling from Equation 1 is obtained. An
elegant way around this problem is the perfect sampler proposed by Propp and Wilson
(1996).

In our case study we rely on the exchange algorithm in combination with perfect sam-
pling from Equation 1. In simulation studies not reported here, we found both Gibbs-
sampling and perfect sampling of Yc

i to work in practice. However, we prefer not to worry
about the number of Gibbs-cycles required for convergence to yci,t ∼ Pt(ϑci). Nevertheless,
the Gibbs-sampler may be the better choice when the goal is to estimate probabilities,
which requires larger samples of yi,t, because each individual draw from the perfect sam-
pler is more computationally expensive. We use the Gibbs-sampler when ’simulating
forward’ from the model for predictive validation and to compute counterfactual results
in our case study.

B Detailed Balance in the Exchange Algorithm

For later reference, note that the normalized posterior is defined as
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p (ϑi|Yi) =
T∏
t=1

`∗ (yi,t|ϑi)
nct (ϑi)

p (ϑi) (p (Yi))−1 (24)

where

p (Yi) =
∫ T∏

t=1

`∗ (yi,t|ϑi)
nct (ϑi)

p (ϑi) dϑi (25)

The detailed balance condition requires that

p (ϑi|Yi) q (ϑci)P (Yc
i |ϑci)α (ϑi,Yi → ϑci ,Yc

i )

= p (ϑci |Yi) q (ϑi)P (Yc
i |ϑi)α (ϑci ,Yi → ϑi,Yc

i )
(26)

Substituting the right hand side of Equation 13 into the left hand side of Equation
26 we obtain

p (ϑi|Yi) q (ϑci)P (Yc
i |ϑci)α (ϑi,Yi → ϑci ,Yc

i )

= p (ϑi|Yi) q (ϑci)P (Yc
i |ϑci)min

1, p (ϑci) q (ϑi)
p (ϑi) q (ϑci)

T∏
t=1

`∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

T∏
t=1

`∗
(
yci,t|ϑi

)
`∗
(
yci,t|ϑci

)


=
T∏
t=1

`∗ (yi,t|ϑi)
nct (ϑi)

p (ϑi) (p (Yi))−1 q (ϑci)
T∏
t=1

`∗
(
yci,t|ϑci

)
nct (ϑci)

×min

1, p (ϑci) q (ϑi)
p (ϑi) q (ϑci)

T∏
t=1

`∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

T∏
t=1

`∗
(
yci,t|ϑi

)
`∗
(
yci,t|ϑci

)


= min

 p (ϑi) (p (Yi))−1 q (ϑci)
∏T
t=1

`∗(yi,t|ϑi)
nct(ϑi)

∏T
t=1

`∗(yc
i,t|ϑ

c
i)

nct(ϑc
i) ,

p (ϑci) (p (Yi))−1 q (ϑi)
∏T
t=1

`∗(yi,t|ϑc
i)

nct(ϑi)
∏T
t=1

`∗(yc
i,t|ϑi)

nct(ϑc
i)



(27)

Going into the ‘opposite direction’ we obtain
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p (ϑci |Yi) q (ϑi)P (Yc
i |ϑi)α (ϑci ,Yi → ϑi,Yc

i )

= p (ϑci |Yi) q (ϑi)P (Yc
i |ϑi)min

1, p (ϑi) q (ϑci)
p (ϑci) q (ϑi)

T∏
t=1

`∗ (yi,t|ϑi)
`∗ (yi,t|ϑci)

T∏
t=1

`∗
(
yci,t|ϑci

)
`∗
(
yci,t|ϑi

)


=
T∏
t=1

`∗ (yi,t|ϑci)
nct (ϑci)

p (ϑci) (p (Yi))−1 q (ϑi)
T∏
t=1

`∗
(
yci,t|ϑi

)
nct (ϑi)

×min

1, p (ϑi) q (ϑci)
p (ϑci) q (ϑi)

T∏
t=1

`∗ (yi,t|ϑi)
`∗ (yi,t|ϑci)

T∏
t=1

`∗
(
yci,t|ϑci

)
`∗
(
yci,t|ϑi

)


= min

 p (ϑci) (p (Yi))−1 q (ϑi)
∏T
t=1

`∗(yi,t|ϑc
i)

nct(ϑc
i)

∏T
t=1

`∗(yc
i,t|ϑi)

nct(ϑi) ,

p (ϑi) (p (Yi))−1 q (ϑci)
∏T
t=1

`∗(yi,t|ϑi)
nct(ϑc

i)
∏T
t=1

`∗(yc
i,t|ϑ

c
i)

nct(ϑi)



(28)

Because the last lines of Equations 27 and 28 are equal by construction, the exchange
algorithm delivers detailed balance with respect to the normalized posterior distribution.

C MCMC Sampling

0. Initialize βi, Θi, for all i = 1, . . . , N , and δ at zero, and σε at 1.

1. Draw from zi|δ, σε,W, indi for all i = 1, . . . , N using the inverse CDF-transformation.
Here indi refers to a vector of classifications of elements in Θi into S, I, or C ini-
tialized randomly (see Equation 16).

2. Draw from δ, σε|{zi},W, prior using standard conjugate results and weakly infor-
mative priors δ ∼ N(0,A−1) and σε ∼ IG(ν, s), where A = 0.01, ν = 3, s = 1.

3. Compute prior classification probabilities P(S, I, C)|δ, σε,W, see Equations 18
through 22.

4. Draw from β̄, Vβ|{βi}, prior. We use standard conjugate results to update hyper-
parameters β̄, Vβ based on weakly informative priors:

β̄ ∼ N(0,A−1)

Vβ ∼ IW (ν,V )
(29)
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where A = 0.01, ν = m+ 3, V = νI, and m is the number of elements in β̄.

5. Draw from θ̄,Vθ|{indi,θi}, prior. See Section 3.2 for the subjective prior parameter
setting. We again rely on standard conjugate results.

6. Draw from ϑi, indi|β̄, Vβ, θ̄,Vθ,P(S, I, C),Yi. This step employs the MH algo-
rithm for the joint update of individual parameters, ϑi = (βi,Θi) and indi, where
indi refers to the vector of classifications of (unique) individual elements θi,k,k′ in
Θi. A joint update is required because given the classification of an element θi,k,k′
into S, I, or C, the hierarchical prior θi,k,k′ is highly informative.

(a) Propose a classification candidate from indci |P(S, I, C), p∗, where p∗ is the
probability of attempting the reclassification of a (unique) individual elements
θi,k,k′ in Θi. This probability is independently generated as p∗ ∼ Beta(1, 5) at
each draw for each respondent, and corresponds to a stochastically determined
step-size. If an element of indi becomes a candidate for a re-classification at-
tempt, the proposal is generated from its hierarchical prior P(S, I, C)k,k′ as a
function of δ, σε and wk,k′ (see Equations 18 through 22). In turn, indi then
determines the structure of the prior for Θi.

(b) Propose a candidate value ϑci from ϑi|β̄, Vβ, θ̄,Vθ, indci ,Yi using auxiliary data
augmentation. The resulting proposal ensures concordance between indci and
ϑci which facilitates the large jumps in the parameters space implied by θ-
reclassifications.

We generate auxiliary latent variables ζi,t,k for offer k in menu t for each in-
dividual respondent i from a density denoted by h(ζi|ϑi,Yi) that we explain
next. Depending on whether the offer was chosen (yi,t,k = 1) or rejected
(yi,t,k = 0), we generate ζi,t,k by truncating below (above) zero a t-distributed
variable with 10 degrees of freedom, mean βi,k + βprice,ipt,k + y′i,tΘk

i , and vari-
ance π2

3 , where Θk
i corresponds to the k-th column of Θi (see Equation 7),

such that y′i,tΘk
i measures the contribution of y′i,t,−k to the conditional prob-

ability P (yi,t,k|ϑi,yi,t,−k). The auxiliary latent variables can be thought of
as approximate data augmentation for the PL which implies logistically dis-
tributed latent variables (see Equations 3 and 15).

We then regress the auxiliary variables ζi,k,t on offer specific constants and
prices, and the respective y′i,t,−k as illustrated next using a three-offer menu
as example. With three offers in total, Θi contains three unique θ-elements:
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Θi =


0 θi,1,2 θi,1,3

θi,2,1 0 θi,2,3

θi,3,1 θi,3,2 0

⇒

θi,2,1

θi,3,1

θi,3,2


The regression equation then is



ζi,1,1

ζi,1,2

ζi,1,3
...
...
ζi,T,1

ζi,T,2

ζi,T,3



=



1 0 0 p1,1 yi,1,2 yi,1,3 0
0 1 0 p1,2 yi,t,1 0 yi,1,3

0 0 1 p1,3 0 yi,1,1 yi,1,2
... ... ... ... ... ... ...
... ... ... ... ... ... ...
1 0 0 pT,1 yi,T,2 yi,T,3 0
0 1 0 pT,2 yi,T,1 0 yi,T,3

0 0 1 pT,3 0 yi,T,1 yi,T,2





βi,1

βi,2

βi,3

βi,price

θi,2,1

θi,3,1

θi,3,2



+



εi,1,1

εi,1,2

εi,1,3
...
...
εi,T,1

εi,T,2

εi,T,3



The first and the central second ’OLS-moments’ of ϑi from this regression are
combined with the multivariate normal hierarchical prior p(ϑi|β̄, Vβ, θ̄,Vθ, indci)
implied by the proposed classifications in indci to derive the location and scale
parameter of a multivariate T proposal distribution with 10 degrees of freedom
denoted g(ϑi|β̄, Vβ, θ̄,Vθ, indci , ζi).

(c) Finally, we substitute into Equation 13 to obtain the probability of accepting
the joint move from (ϑi, indi) to (ϑci , indci):

α (ϑi, indi,Yi → ϑci , ind
c
i ,Yc

i ) =

min

1,
p
(
ϑci |β̄, Vβ, θ̄,Vθ, indci

)
P (indci |P(S, I, C))

p
(
ϑi|β̄, Vβ, θ̄,Vθ, indi

)
P (indi|P(S, I, C))

×

g
(
ϑi|β̄, Vβ, θ̄,Vθ, indi, ζi

)
h (ζi|ϑci ,Yi)P (indi(I(p∗))|P(S, I, C))

g
(
ϑci |β̄, Vβ, θ̄,Vθ, indci , ζi

)
h (ζi|ϑi,Yi)P (indci(I(p∗))|P(S, I, C))

×

T∏
t=1

`∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

`∗
(
yci,t|ϑi

)
`∗
(
yci,t|ϑci

)


(30)

The vertically separated factors on the left hand side of Equation 30 in turn
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correspond to the (hierarchical) prior of (ϑi, indi) (see Equations 17 and 29,
and Equations 18 through 22), the proposal distributions just described, and
the likelihood contribution. The factors h(ζi|ϑci ,Yi) and (h(ζi|ϑi,Yi))−1

in the third line of Equation 30 ensure the detailed balance between the
move from the current state (ϑi, indi,Yi) — via ζi — to the candidate state,
(ϑci , indci ,Yc

i ), and the move in the opposite direction.

Finally, the notation (I(p∗)) indicates the subset of elements in indi eligi-
ble for a potential reclassification in a particular iteration of the MCMC. All
other elements in indi deterministically retain their old value in this iteration.
Because we use the hierarchical prior as proposal, and elements in indi are
independently distributed a priori, Equation 30 simplifies to:

α (ϑi, indi,Yi → ϑci , ind
c
i ,Yc

i ) =

min

1,
p
(
ϑci |β̄, Vβ, θ̄,Vθ, indci

)
p
(
ϑi|β̄, Vβ, θ̄,Vθ, indi

) g
(
ϑi|β̄, Vβ, θ̄,Vθ, indi, ζi

)
h (ζi|ϑci ,Yi)

g
(
ϑci |β̄, Vβ, θ̄,Vθ, indci , ζi

)
h (ζi|ϑi,Yi)

×

T∏
t=1

`∗ (yi,t|ϑci)
`∗ (yi,t|ϑi)

`∗
(
yci,t|ϑi

)
`∗
(
yci,t|ϑci

)


(31)

D IndepCPE

In our empirical study we estimate credibly negative cross-price effects between products
that are clearly identified as strong substitutes on average in the population by the ALCM
(see Section 4).

To numerically illustrate the misspecification inherent to the IndepCPE that causes
this result, we simulate 100 choices from two-item menus comprising alternatives A and
B from the ALCM with price parameter equal to −1 and alternative specific constants
equal to 3 and 5 such that B is the more preferred brand overall. The utility interaction
parameter θ is set to −10 implying relatively strong substitution between A and B given
the magnitude of alternative specific constants.

Across the 100 two-item menus, prices of alternative A vary uniformly on the grid
[0.2, 0.4, 0.6, . . . , 4]. Prices of alternative B are constructed according to pB = pA + 2,
such that the expected indirect utilities of both alternatives are exactly equal in each of
the 100 menus. Thus, our simulated respondent is, before realizations of the error draws,
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always indifferent between A and B.
We then create additional data sets using the same setting except for how we generate

B’s prices. In these data sets we generate B’s prices as pB = pA + 2 + ξ, where ξ is
distributed iid across menus according to ξ ∼ N(0, σ). The ξ-draws serve to break the
perfect utility balance between A and B.

Table 16: IndepCPE - Simulated Data

Noise Posterior Means (std)
βp βA βB βpB

βpA

0 0.253 -0.337 0.086 -0.178 -0.517
(0.857) (1.772) (1.734) (0.848) (0.888)

0.1 -0.096 -0.081 0.118 0.008 -0.267
(0.715) (1.517) (1.483) (0.711) (0.754)

0.2 -0.101 0.950 -0.208 -0.272 0.009
(0.605) (1.349) (1.288) (0.607) (0.634)

0.3 -0.175 0.884 0.030 -0.219 0.043
(0.471) (1.116) (1.016) (0.472) (0.515)

0.4 -0.308 0.222 0.390 0.009 0.122
(0.377) (0.917) (0.904) (0.373) (0.407)

0.5 -0.554 -0.369 0.889 0.275 0.408
(0.333) (0.841) (0.797) (0.322) (0.384)

0.9 -0.773 -0.388 1.182 0.398 0.607
(0.219) (0.662) (0.657) (0.208) (0.277)

2 -1.010 -0.440 1.087 0.523 0.882
(0.164) (0.526) (0.610) (0.124) (0.282)

random -1.327 -1.722 2.054 1.127 1.153
(0.231) (0.805) (0.693) (0.297) (0.293)

Table 16 summarizes posterior means (standard deviations) of IndepCPE parameters,
i.e., the price coefficient, alternative specific constants, the cross effect from B’s price on
the indirect utility of A, and vice versa. The rows in Table 16 correspond to different
data sets and the first column indicates the standard deviation of the ξ-displacement
of B’s price in the data set. Thus, the first row corresponds to the case where the
respondent always is exactly indifferent between A and B. The last row represents the
case where we draw pA and pB completely randomly from the predefined set of prices.
We see that IndepCPE fails to recover positive cross-price effects when a respondent is
indifferent or about indifferent between A and B. As the noise in pB increases, estimated
cross-price effects become more positive and the uncertainty in parameters decreases.
However, even when the price variation in the data is sufficient for cross-price effects to
reflect substitution between A and B, the model fails at generating substitutive effects in
individual menus where prices make the respondent indifferent between the two brands.
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Next we illustrate the performance of the IndepCPE as an approximating model in
a standard hierarchical setting with manipulated price variation as described above. We
generate 2000 respondents with individual alternative specific constants distributed iid
βi ∼ N(5, 4) and price-sensitivity βip ∼ N(−1.5, 0.4), each solving 2 choice tasks com-
prised of alternatives A and B. We mimic the distribution of demand interdependencies
recovered with ALCMhet in our case study and generate individual choices from the
ALCM, with A and B being weak complements, weak substitutes or substitutes, with
θi from the set {1.2,−1.5,−5} with probabilities (0.18, 0.63, 0.19). We draw prices from
the grid [1.1, 1.2, 1.3, . . . , 5] such that individuals are about indifferent between the two
offers (ξ ∼ N(0, 0.1)) and fit the IndepCPE with a multivariate normal hierachical prior
distribution over parameters to the data.

Table 17: Hierarchical Prior Means and Standard Deviations

Mean Standard Deviation
Price Sensitivity -0.723 0.480

(0.042) (0.037)
βA 3.747 1.725

(0.229) (0.414)
βB 3.991 1.585

(0.252) (0.501)
βpB

-0.732 0.478
(0.052) (0.037)

βpA
-0.785 0.519
(0.058) (0.049)

Table 17 reports posterior means of the hyper parameters in the IndepCPE. Posterior
standard deviations are in parentheses. Although substitutes prevail in the data set,
inferred cross-price effects are credibly negative. These results illustrate how IndepCPE
may fail at correctly reflecting substition and complementarity in applications.
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Online Appendix: Posterior Means and Covariances

of Utility Interactions, Correlations, Cross-Price Ef-

fects and Preference Correlations from Different Mod-

els

Table 18: Posterior Means of Individual Θ (std) - ALCMhet

X
box

360

X
box

O
ne

X
box

K
inect

X
box

W
heel

PS3

PS4

PS
Eye

PS
M
ove

PS
W

heel

W
ii

W
iiU

W
iiW

heel

Xbox One -4.91 0
(0.18)

Xbox Kinect 1.15 1.04 0
(0.12) (0.1)

Xbox Wheel 1.23 1.14 -1.44 0
(0.1) (0.09) (0.13)

PS3 -4.82 -4.93 -1.45 -1.52 0
(0.14) (0.17) (0.12) (0.13)

PS4 -4.86 -4.96 -1.43 -1.41 -5.08 0
(0.15) (0.16) (0.12) (0.13) (0.13)

PS Eye -1.49 -1.5 -1.46 -1.41 0.95 1.15 0
(0.15) (0.15) (0.13) (0.15) (0.12) (0.11)

PS Move -1.45 -1.55 -1.49 -1.43 1.02 1.26 -1.63 0
(0.13) (0.15) (0.14) (0.14) (0.09) (0.09) (0.13)

PS Wheel -1.53 -1.48 -1.51 -1.47 1.06 1.2 -1.38 -1.39 0
(0.12) (0.13) (0.13) (0.12) (0.09) (0.11) (0.14) (0.12)

Wii -4.79 -4.91 -1.43 -1.49 -4.83 -4.79 -1.38 -1.52 -1.45 0
(0.16) (0.17) (0.13) (0.13) (0.15) (0.16) (0.12) (0.13) (0.13)

Wii U -4.89 -4.87 -1.46 -1.31 -4.97 -4.81 -1.47 -1.46 -1.44 -4.99 0
(0.17) (0.15) (0.14) (0.12) (0.13) (0.16) (0.12) (0.13) (0.16) (0.15)

Wii Wheel -1.59 -1.34 -1.47 -1.49 -1.5 -1.44 -1.48 -1.45 -1.53 1.02 1.11 0
(0.13) (0.12) (0.13) (0.12) (0.16) (0.14) (0.13) (0.14) (0.12) (0.1) (0.1)

Wii Motion -1.45 -1.5 -1.58 -1.45 -1.46 -1.36 -1.45 -1.43 -1.4 1.18 1.25 -1.36
(0.14) (0.15) (0.15) (0.13) (0.11) (0.12) (0.12) (0.12) (0.12) (0.1) (0.09) (0.12)
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Table 19: Posterior Means of Individual Θ (std) - ALCMhetInv

X
box
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PS
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W
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heel

W
iiM

otion

Xbox One -4.09 0
(0.12)

Xbox Kinect 1.26 1.23 0
(0.11) (0.12)

Xbox Wheel 1.35 1.31 -1.56 0
(0.12) (0.11) (0.12)

PS3 -4.04 -4.1 -1.51 -1.53 0
(0.12) (0.12) (0.14) (0.11)

PS4 -4.14 -4.19 -1.65 -1.59 -4.32 0
(0.13) (0.12) (0.11) (0.11) (0.11)

PS Eye -1.56 -1.63 -1.53 -1.59 1.16 1.28 0
(0.11) (0.11) (0.13) (0.13) (0.11) (0.09)

PS Move -1.63 -1.57 -1.6 -1.62 1.16 1.37 -1.8 0
(0.12) (0.13) (0.13) (0.13) (0.1) (0.11) (0.13)

PS Wheel -1.63 -1.62 -1.61 -1.49 1.18 1.36 -1.52 -1.42 0
(0.11) (0.14) (0.13) (0.12) (0.11) (0.09) (0.12) (0.11)

Wii -4 -4.09 -1.58 -1.57 -4.09 -4.04 -1.6 -1.58 -1.57 0
(0.12) (0.12) (0.12) (0.13) (0.12) (0.1) (0.13) (0.12) (0.13)

Wii U -4.07 -4.07 -1.59 -1.52 -4.15 -3.96 -1.57 -1.6 -1.54 -4.13 0
(0.12) (0.12) (0.12) (0.11) (0.12) (0.11) (0.14) (0.12) (0.12) (0.12)

Wii Wheel -1.55 -1.56 -1.55 -1.59 -1.55 -1.59 -1.54 -1.58 -1.64 1.17 1.26 0
(0.13) (0.11) (0.11) (0.16) (0.1) (0.11) (0.12) (0.12) (0.13) (0.1) (0.08)

Wii Motion -1.56 -1.68 -1.55 -1.51 -1.62 -1.58 -1.63 -1.62 -1.51 1.33 1.35 -1.44 0
(0.12) (0.11) (0.13) (0.12) (0.12) (0.11) (0.14) (0.1) (0.11) (0.1) (0.1) (0.12)

Inventory -4.18 -4.15 -1.63 -1.7 -4.06 -4.03 -1.69 -1.65 -1.64 -4.06 -4.02 -1.65 -1.65
(0.11) (0.11) (0.13) (0.14) (0.1) (0.16) (0.11) (0.12) (0.13) (0.12) (0.11) (0.11) (0.11)

Table 20: Posterior Means of Individual Θ (std) - ALCMhom
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iiW

heel

Xbox One -2.74 0
(0.13)

Xbox Kinect 1.57 0.87 0
(0.07) (0.1)

Xbox Wheel 2.32 1.84 -0.06 0
(0.05) (0.05) (0.13)

PS3 -1.1 -0.97 -1.33 -0.25 0
(0.11) (0.05) (0.05) (0.05)

PS4 -1.08 -1.72 -0.97 -0.13 -3.03 0
(0.1) (0.04) (0.05) (0.04) (0.05)

PS Eye -0.7 -0.1 -0.28 0.22 0.43 1.41 0
(0.04) (0.07) (0.09) (0.1) (0.08) (0.08)

PS Move -1.28 -0.73 -0.67 -0.29 0.89 1.73 -0.9 0
(0.06) (0.16) (0.1) (0.06) (0.06) (0.09) (0.07)

PS Wheel -0.47 0.16 -0.17 -0.09 1.19 1.69 0.84 0.44 0
(0.08) (0.06) (0.09) (0.08) (0.05) (0.05) (0.13) (0.09)

Wii -0.94 -0.95 -0.08 -0.38 -1.37 -0.54 -0.99 -0.48 -0.39 0
(0.04) (0.08) (0.09) (0.05) (0.05) (0.05) (0.08) (0.09) (0.04)

Wii U -1.23 -0.85 -0.74 0.29 -1.66 -0.91 -0.62 -0.03 0.28 -2.18 0
(0.13) (0.08) (0.14) (0.08) (0.13) (0.06) (0.05) (0.09) (0.08) (0.11)

Wii Wheel -0.63 -0.49 -0.32 -0.18 -0.4 -0.64 0.47 -0.73 -0.64 0.57 0.94 0
(0.11) (0.04) (0.07) (0.05) (0.04) (0.04) (0.1) (0.06) (0.12) (0.09) (0.13)

Wii Motion -0.06 -0.53 -1.05 -0.11 -0.7 -0.43 -0.27 -0.81 -0.12 1.22 2.01 0.53
(0.08) (0.04) (0.03) (0.05) (0.04) (0.07) (0.05) (0.1) (0.08) (0.05) (0.07) (0.05)
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Table 21: Correlation Matrix of Error Terms (std) - MvP
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W
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Xbox One -0.03 1
(0.05)

Xbox Kinect 0.51 0.38 1
(0.05) (0.05)

Xbox Wheel 0.45 0.47 0.24 1
(0.06) (0.06) (0.07)

PS3 -0.17 -0.15 -0.18 -0.19 1
(0.07) (0.08) (0.07) (0.06)

PS4 -0.27 -0.34 -0.33 -0.13 -0.36 1
(0.06) (0.08) (0.04) (0.06) (0.05)

PS Eye -0.3 -0.29 -0.18 -0.23 0.09 0.4 1
(0.05) (0.06) (0.09) (0.07) (0.06) (0.05)

PS Move -0.37 -0.21 -0.27 -0.12 0.21 0.53 -0.04 1
(0.05) (0.09) (0.05) (0.08) (0.07) (0.04) (0.05)

PS Wheel -0.24 -0.14 -0.32 -0.08 0.2 0.5 0.33 0.35 1
(0.06) (0.08) (0.08) (0.08) (0.06) (0.05) (0.04) (0.04)

Wii -0.02 -0.05 -0.05 -0.25 -0.24 -0.12 -0.33 -0.19 -0.29 1
(0.05) (0.04) (0.07) (0.06) (0.06) (0.08) (0.06) (0.08) (0.07)

Wii U -0.09 -0.06 -0.15 -0.09 -0.36 0 -0.1 -0.14 -0.18 -0.15 1
(0.06) (0.08) (0.09) (0.07) (0.08) (0.07) (0.06) (0.06) (0.1) (0.05)

Wii Wheel -0.11 0.06 -0.07 -0.1 -0.11 -0.27 -0.14 -0.28 -0.17 0.39 0.39 1
(0.08) (0.07) (0.08) (0.07) (0.06) (0.07) (0.07) (0.06) (0.07) (0.05) (0.05)

Wii Motion -0.22 0.05 -0.26 -0.2 -0.27 -0.19 -0.3 -0.19 -0.13 0.48 0.51 0.46
(0.06) (0.07) (0.08) (0.08) (0.06) (0.05) (0.05) (0.05) (0.07) (0.04) (0.04) (0.06)

Table 22: Posterior Means of Cross-Price Effects (std) - IndepCPE
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Xbox 360 0.00 0.00 -1.03 -0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (0.07) (0.11) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Xbox One 0.00 0.00 0.00 -0.66 0.00 -0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (0.05) (-) (0.02) (-) (-) (-) (-) (-) (-) (-)

Xbox Kinect -0.57 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.09) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Xbox Wheel -0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.24) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

PS3 -0.41 0.00 0.00 0.00 0.00 -0.17 -0.41 -0.42 -0.30 0.00 0.00 0.00 0.00
(0.15) (-) (-) (-) (-) (0.03) (0.08) (0.09) (0.10) (-) (-) (-) (-)

PS4 0.00 -0.45 0.00 0.00 -0.34 0.00 -0.62 -0.66 -0.77 0.00 -0.37 0.00 0.00
(-) (0.04) (-) (-) (0.04) (-) (0.05) (0.05) (0.09) (-) (0.06) (-) (-)

PS Eye 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.17 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (0.16) (-) (-) (-) (-) (-)

PS Move 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

PS Wheel 0.00 0.00 0.00 0.00 -0.55 0.00 0.00 -0.31 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (0.19) (-) (-) (0.19) (-) (-) (-) (-) (-)

Wii -0.45 0.00 0.00 0.00 -0.26 0.00 0.00 0.00 0.00 0.00 -0.50 -0.35 -0.32
(0.07) (-) (-) (-) (0.08) (-) (-) (-) (-) (-) (0.10) (0.06) (0.07)

Wii U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 -0.57 0.00 -0.62 -0.53
(-) (-) (-) (-) (-) (-) (-) (-) (-) (0.03) (-) (0.04) (0.04)

Wii Wheel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Wii Motion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)
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Table 23: Heterogeneity of Individual Θ (std) - ALCMhet
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Xbox One 2.91 0
(0.09)

Xbox Kinect 2.26 2.18 0
(0.09) (0.09)

Xbox Wheel 2.31 2.24 2.88 0
(0.08) (0.08) (0.11)

PS3 2.95 2.88 2.85 2.9 0
(0.08) (0.08) (0.09) (0.1)

PS4 2.92 2.88 2.8 2.84 2.82 0
(0.09) (0.09) (0.11) (0.09) (0.08)

PS Eye 2.84 2.88 2.87 2.8 2.08 2.24 0
(0.11) (0.12) (0.1) (0.12) (0.1) (0.09)

PS Move 2.85 2.87 2.85 2.86 2.15 2.33 2.93 0
(0.1) (0.11) (0.1) (0.1) (0.09) (0.08) (0.09)

PS Wheel 2.89 2.84 2.86 2.91 2.18 2.29 2.92 2.87 0
(0.09) (0.1) (0.1) (0.09) (0.09) (0.09) (0.1) (0.1)

Wii 2.96 2.9 2.87 2.89 2.94 2.96 2.81 2.86 2.88 0
(0.08) (0.1) (0.11) (0.1) (0.07) (0.08) (0.11) (0.09) (0.11)

Wii U 2.91 2.92 2.88 2.79 2.87 2.95 2.85 2.88 2.86 2.86 0
(0.08) (0.08) (0.1) (0.11) (0.08) (0.08) (0.1) (0.1) (0.1) (0.08)

Wii Wheel 2.91 2.8 2.88 2.89 2.87 2.83 2.91 2.83 2.9 2.15 2.23 0
(0.09) (0.1) (0.1) (0.09) (0.11) (0.1) (0.1) (0.12) (0.09) (0.09) (0.09)

Wii Motion 2.85 2.89 2.91 2.83 2.85 2.79 2.84 2.82 2.86 2.27 2.33 2.88
(0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.1) (0.09) (0.09) (0.08) (0.07) (0.1)

Table 24: Heterogeneity of Individual Θ (std) - ALCMhetInv
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Xbox One 2.47 0
(0.06)

Xbox Kinect 2.17 2.14 0
(0.08) (0.09)

Xbox Wheel 2.21 2.18 2.67 0
(0.08) (0.08) (0.07)

PS3 2.5 2.47 2.66 2.64 0
(0.06) (0.07) (0.09) (0.08)

PS4 2.45 2.44 2.68 2.7 2.38 0
(0.08) (0.07) (0.06) (0.07) (0.07)

PS Eye 2.65 2.66 2.66 2.64 2.08 2.15 0
(0.07) (0.07) (0.08) (0.08) (0.08) (0.07)

PS Move 2.66 2.64 2.67 2.7 2.09 2.22 2.75 0
(0.07) (0.07) (0.08) (0.07) (0.08) (0.08) (0.07)

PS Wheel 2.69 2.65 2.66 2.7 2.11 2.2 2.79 2.69 0
(0.07) (0.08) (0.08) (0.07) (0.08) (0.07) (0.08) (0.08)

Wii 2.52 2.48 2.7 2.67 2.48 2.51 2.69 2.65 2.65 0
(0.06) (0.07) (0.08) (0.07) (0.06) (0.05) (0.07) (0.07) (0.07)

Wii U 2.48 2.5 2.69 2.65 2.45 2.53 2.71 2.7 2.66 2.46 0
(0.06) (0.07) (0.07) (0.08) (0.07) (0.06) (0.08) (0.07) (0.07) (0.06)

Wii Wheel 2.65 2.69 2.69 2.65 2.68 2.67 2.64 2.64 2.69 2.1 2.16 0
(0.08) (0.07) (0.07) (0.09) (0.08) (0.07) (0.08) (0.07) (0.09) (0.08) (0.07)

Wii Motion 2.67 2.76 2.62 2.63 2.69 2.7 2.67 2.69 2.67 2.19 2.21 2.79 0
(0.07) (0.06) (0.08) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.07) (0.08)

Inventory 2.41 2.44 2.71 2.69 2.48 2.49 2.7 2.66 2.71 2.48 2.5 2.7 2.66
(0.07) (0.07) (0.07) (0.07) (0.06) (0.07) (0.07) (0.07) (0.07) (0.07) (0.06) (0.08) (0.07)
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Table 25: Heterogeneity in Cross-Price Effects (std) - IndepCPE
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Xbox 360 0.00 0.00 0.81 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (0.04) (0.05) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Xbox One 0.00 0.00 0.00 0.57 0.00 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (0.03) (-) (0.02) (-) (-) (-) (-) (-) (-) (-)

Xbox Kinect 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.05) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Xbox Wheel 1.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(0.12) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

PS3 0.78 0.00 0.00 0.00 0.00 0.65 0.67 0.81 0.69 0.00 0.00 0.00 0.00
(0.07) (-) (-) (-) (-) (0.04) (0.04) (0.06) (0.05) (-) (-) (-) (-)

PS4 0.00 0.64 0.00 0.00 0.59 0.00 0.61 0.68 0.68 0.00 0.61 0.00 0.00
(-) (0.02) (-) (-) (0.03) (-) (0.04) (0.04) (0.06) (-) (0.05) (-) (-)

PS Eye 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.19 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (0.12) (-) (-) (-) (-) (-)

PS Move 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

PS Wheel 0.00 0.00 0.00 0.00 1.36 0.00 0.00 1.34 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (0.14) (-) (-) (0.14) (-) (-) (-) (-) (-)

Wii 0.75 0.00 0.00 0.00 0.73 0.00 0.00 0.00 0.00 0.00 0.74 0.64 0.61
( 0.04) (-) (-) (-) (0.07) (-) (-) (-) (-) (-) (0.06) (0.04) (0.04)

Wii U 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.00 0.62 0.60
(-) (-) (-) (-) (-) (-) (-) (-) (-) (0.03) (-) (0.03) (0.03)

Wii Wheel 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Wii Motion 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-)

Table 26: Correlation Matrix of Individual Preferences (std) - ALCMhet
Price
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Xbox 360 -0.42 1
(0.05)

Xbox One -0.42 0.45 1
(0.06) (0.07)

Xbox Kinect -0.17 0.19 0.24 1
(0.08) (0.11) (0.11)

Xbox Wheel -0.21 0.17 0.04 0.65 1
(0.06) (0.09) (0.1) (0.09)

PS3 -0.39 0.87 0.32 -0.09 0.04 1
(0.06) (0.02) (0.1) (0.12) (0.09)

PS4 -0.38 0.4 0.78 -0.06 -0.08 0.47 1
(0.05) (0.07) (0.04) (0.12) (0.1) (0.06)

PS Eye -0.13 0.18 -0.08 0.48 0.57 0.19 0.11 1
(0.07) (0.09) (0.09) (0.11) (0.08) (0.11) (0.09)

PS Move -0.28 0.2 0.36 0.54 0.54 0.2 0.48 0.7 1
(0.06) (0.08) (0.08) (0.09) (0.08) (0.08) (0.06) (0.06)

PS Wheel -0.15 0 0.03 0.35 0.71 0.06 0.22 0.61 0.69 1
(0.06) (0.09) (0.1) (0.1) (0.08) (0.09) (0.09) (0.07) (0.06)

Wii -0.38 0.63 0.1 0.08 0.24 0.59 -0.02 0.09 -0.06 -0.05 1
(0.06) (0.06) (0.12) (0.1) (0.09) (0.06) (0.08) (0.1) (0.1) (0.1)

Wii U -0.48 0.26 0.63 0.14 0.19 0.24 0.52 0.05 0.27 0.14 0.5 1
(0.05) (0.08) (0.06) (0.1) (0.1) (0.09) (0.07) (0.09) (0.12) (0.1) (0.09)

Wii Wheel -0.27 0.22 -0.01 0.54 0.79 0.1 -0.23 0.33 0.3 0.49 0.48 0.31 1
(0.06) (0.08) (0.1) (0.11) (0.06) (0.08) (0.08) (0.09) (0.08) (0.09) (0.06) (0.09)

Wii Motion -0.31 0.19 0.03 0.53 0.64 0.06 -0.24 0.28 0.26 0.28 0.59 0.46 0.83
(0.06) (0.08) (0.09) (0.08) (0.07) (0.09) (0.08) (0.11) (0.11) (0.12) (0.06) (0.07) (0.04)
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Table 27: Correlation Matrix of Individual Preferences (std) - ALCMhetInv
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Xbox 360 -0.53 1
(0.05)

Xbox One -0.48 0.57 1
(0.05) (0.08)

Xbox Kinect -0.26 0.28 0.25 1
(0.08) (0.12) (0.12)

Xbox Wheel -0.25 0.32 0.03 0.73 1
(0.06) (0.1) (0.1) (0.06)

PS3 -0.51 0.92 0.57 0.14 0.21 1
(0.05) (0.02) (0.07) (0.12) (0.09)

PS4 -0.43 0.56 0.91 0.15 -0.06 0.63 1
(0.06) (0.09) (0.02) (0.12) (0.1) (0.07)

PS Eye -0.18 0.27 0.07 0.64 0.64 0.27 0.15 1
(0.07) (0.08) (0.1) (0.09) (0.07) (0.08) (0.09)

PS Move -0.24 0.26 0.41 0.68 0.59 0.27 0.46 0.73 1
(0.07) (0.09) (0.08) (0.08) (0.08) (0.1) (0.08) (0.06)

PS Wheel -0.18 0.18 0.16 0.6 0.71 0.21 0.21 0.67 0.8 1
(0.07) (0.08) (0.09) (0.09) (0.06) (0.09) (0.08) (0.07) (0.05)

Wii -0.46 0.72 0.23 0.18 0.32 0.65 0.15 0.17 -0.09 -0.01 1
(0.06) (0.05) (0.1) (0.11) (0.09) (0.06) (0.13) (0.1) (0.11) (0.09)

Wii U -0.55 0.59 0.76 0.42 0.32 0.51 0.61 0.19 0.31 0.2 0.62 1
(0.05) (0.08) (0.04) (0.1) (0.09) (0.07) (0.06) (0.11) (0.09) (0.08) (0.09)

Wii Wheel -0.29 0.31 -0.01 0.55 0.78 0.19 -0.2 0.38 0.27 0.51 0.51 0.41 1
(0.06) (0.1) (0.09) (0.1) (0.05) (0.1) (0.08) (0.09) (0.09) (0.08) (0.07) (0.08)

Wii Motion -0.34 0.37 0.04 0.53 0.68 0.22 -0.14 0.35 0.16 0.3 0.65 0.52 0.82
(0.06) (0.08) (0.1) (0.1) (0.06) (0.09) (0.09) (0.09) (0.1) (0.1) (0.06) (0.07) (0.04)

Table 28: Correlation Matrix of Individual Preferences (std) - ALCMhom
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Xbox 360 -0.4 1
(0.05)

Xbox One -0.37 0.51 1
(0.06) (0.08)

Xbox Kinect -0.15 0.29 0.34 1
(0.06) (0.08) (0.09)

Xbox Wheel -0.11 0.26 0.08 0.6 1
(0.07) (0.08) (0.1) (0.07)

PS3 -0.39 0.81 0.35 0.02 0.07 1
(0.05) (0.03) (0.09) (0.09) (0.08)

PS4 -0.35 0.3 0.73 -0.04 -0.2 0.45 1
(0.06) (0.08) (0.05) (0.09) (0.08) (0.07)

PS Eye -0.09 0.16 -0.02 0.45 0.28 0.28 0.08 1
(0.06) (0.09) (0.1) (0.08) (0.08) (0.08) (0.08)

PS Move -0.18 0.19 0.35 0.62 0.46 0.23 0.34 0.56 1
(0.06) (0.09) (0.08) (0.07) (0.08) (0.08) (0.07) (0.06)

PS Wheel -0.12 0.07 0.04 0.19 0.64 0.17 0.22 0.26 0.49 1
(0.06) (0.09) (0.09) (0.09) (0.06) (0.08) (0.07) (0.08) (0.07)

Wii -0.31 0.54 -0.11 0.14 0.23 0.52 -0.16 0.24 -0.09 0.04 1
(0.06) (0.07) (0.1) (0.09) (0.09) (0.07) (0.09) (0.09) (0.09) (0.09)

Wii U -0.41 0.29 0.49 0.23 0.09 0.21 0.36 0.11 0.07 0.03 0.46 1
(0.06) (0.1) (0.08) (0.1) (0.1) (0.1) (0.08) (0.09) (0.09) (0.09) (0.08)

Wii Wheel -0.18 0.22 0 0.52 0.78 0.02 -0.3 0.16 0.26 0.47 0.44 0.37 1
(0.06) (0.08) (0.1) (0.08) (0.05) (0.08) (0.08) (0.08) (0.08) (0.07) (0.07) (0.08)

Wii Motion -0.24 0.21 -0.04 0.54 0.5 0.08 -0.22 0.28 0.34 0.22 0.6 0.42 0.67
(0.06) (0.09) (0.09) (0.08) (0.07) (0.08) (0.08) (0.09) (0.08) (0.08) (0.05) (0.08) (0.05)
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Table 29: Correlation Matrix of Individual Preferences (std) - Indep Model
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PS
Eye

PS
M
ove

PS
W

heel

W
ii

W
iiU

W
iiW

heel

Xbox 360 -0.34 1
(0.06)

Xbox One -0.31 0.38 1
(0.08) (0.1)

Xbox Kinect -0.08 0.53 0.41 1
(0.07) (0.07) (0.1)

Xbox Wheel -0.02 0.48 0.2 0.67 1
(0.06) (0.07) (0.09) (0.06)

PS3 -0.33 0.74 0.12 0.1 0.17 1
(0.06) (0.04) (0.1) (0.09) (0.08)

PS4 -0.3 0.05 0.56 -0.15 -0.25 0.22 1
(0.06) (0.09) (0.08) (0.1) (0.08) (0.08)

PS Eye -0.06 0.1 0.04 0.24 0.2 0.31 0.36 1
(0.06) (0.08) (0.1) (0.09) (0.08) (0.08) (0.06)

PS Move -0.14 0.11 0.33 0.26 0.21 0.28 0.6 0.6 1
(0.06) (0.08) (0.08) (0.09) (0.08) (0.08) (0.05) (0.06)

PS Wheel -0.06 0.06 0.07 0.03 0.41 0.24 0.46 0.52 0.65 1
(0.06) (0.08) (0.08) (0.09) (0.07) (0.08) (0.06) (0.06) (0.05)

Wii -0.3 0.49 -0.22 0.12 0.17 0.45 -0.27 0.01 -0.25 -0.13 1
(0.07) (0.07) (0.13) (0.1) (0.08) (0.07) (0.08) (0.08) (0.08) (0.08)

Wii U -0.38 0.13 0.4 0.12 0.09 0.02 0.2 0.03 0.03 -0.02 0.41 1
(0.07) (0.1) (0.1) (0.1) (0.08) (0.1) (0.08) (0.08) (0.08) (0.07) (0.08)

Wii Wheel -0.12 0.25 -0.06 0.39 0.64 0.03 -0.42 0.01 -0.1 0.15 0.53 0.53 1
(0.07) (0.08) (0.1) (0.08) (0.05) (0.07) (0.07) (0.08) (0.08) (0.07) (0.06) (0.07)

Wii Motion -0.19 0.18 -0.13 0.31 0.37 0.01 -0.33 0.02 -0.05 -0.02 0.69 0.61 0.77
(0.06) (0.07) (0.09) (0.08) (0.07) (0.08) (0.07) (0.08) (0.08) (0.07) (0.04) (0.05) (0.04)

Table 30: Correlation Matrix of Individual Preferences (std) - MvP
Price

X
box

360

X
box

O
ne

X
box

K
inect

X
box

W
heel

PS3

PS4

PS
Eye

PS
M
ove

PS
W

heel

W
ii

W
iiU

W
iiW

heel

Xbox 360 -0.44 1
(0.06)

Xbox One -0.52 0.36 1
(0.08) (0.08)

Xbox Kinect -0.02 0.42 0.31 1
(0.09) (0.08) (0.09)

Xbox Wheel 0.04 0.41 0.14 0.55 1
(0.07) (0.07) (0.09) (0.07)

PS3 -0.49 0.67 0.19 0.08 0.14 1
(0.06) (0.05) (0.09) (0.08) (0.07)

PS4 -0.49 0.1 0.5 -0.16 -0.25 0.24 1
(0.06) (0.08) (0.07) (0.09) (0.08) (0.07)

PS Eye -0.01 0.09 -0.02 0.22 0.2 0.23 0.28 1
(0.08) (0.08) (0.09) (0.08) (0.09) (0.07) (0.07)

PS Move -0.16 0.1 0.21 0.23 0.17 0.23 0.51 0.52 1
(0.07) (0.08) (0.08) (0.08) (0.08) (0.07) (0.05) (0.05)

PS Wheel 0.01 0.04 -0.03 0.06 0.35 0.16 0.37 0.44 0.56 1
(0.07) (0.08) (0.09) (0.1) (0.08) (0.07) (0.07) (0.07) (0.06)

Wii -0.42 0.44 0 0.08 0.15 0.4 -0.18 -0.05 -0.23 -0.18 1
(0.05) (0.07) (0.09) (0.1) (0.09) (0.06) (0.07) (0.07) (0.07) (0.07)

Wii U -0.51 0.13 0.39 0.07 0.07 0.06 0.23 0.02 0.02 -0.05 0.38 1
(0.07) (0.09) (0.09) (0.09) (0.08) (0.09) (0.08) (0.08) (0.08) (0.08) (0.07)

Wii Wheel -0.14 0.21 -0.02 0.29 0.54 0.04 -0.36 0.01 -0.08 0.1 0.46 0.43 1
(0.07) (0.08) (0.09) (0.08) (0.06) (0.08) (0.07) (0.08) (0.08) (0.07) (0.07) (0.07)

Wii Motion -0.18 0.16 -0.06 0.23 0.35 0.01 -0.32 -0.01 -0.08 -0.06 0.61 0.51 0.69
(0.07) (0.07) (0.09) (0.09) (0.08) (0.08) (0.07) (0.07) (0.07) (0.08) (0.05) (0.06) (0.04)
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Table 31: Correlation Matrix of Individual Preferences (std) - IndepCPE

Price

X
box

360

X
box

O
ne

X
box

K
inect

X
box

W
heel

PS3

PS4

PS
Eye

PS
M
ove

PS
W

heel

W
ii

W
iiU

W
iiW

heel

Xbox 360 -0.6 1
(0.05)

Xbox One -0.63 0.92 1
(0.04) (0.03)

Xbox Kinect -0.61 0.9 0.93 1
(0.05) (0.04) (0.03)

Xbox Wheel -0.58 0.88 0.9 0.88 1
(0.05) (0.06) (0.05) (0.05)

PS3 -0.63 0.93 0.96 0.93 0.91 1
(0.04) (0.03) (0.02) (0.03) (0.05)

PS4 -0.63 0.92 0.95 0.91 0.9 0.96 1
(0.04) (0.05) (0.03) (0.06) (0.05) (0.02)

PS Eye -0.61 0.89 0.93 0.9 0.88 0.94 0.94 1
(0.04) (0.05) (0.03) (0.04) (0.05) (0.02) (0.02)

PS Move -0.63 0.92 0.95 0.92 0.91 0.96 0.97 0.94 1
(0.04) (0.04) (0.03) (0.05) (0.05) (0.02) (0.01) (0.02)

PS Wheel -0.62 0.93 0.95 0.92 0.91 0.96 0.97 0.94 0.97 1
(0.04) (0.04) (0.03) (0.04) (0.05) (0.02) (0.01) (0.02) (0.01)

Wii -0.63 0.92 0.96 0.93 0.9 0.96 0.96 0.93 0.95 0.95 1
(0.04) (0.04) (0.02) (0.03) (0.05) (0.02) (0.04) (0.03) (0.03) (0.03)

Wii U -0.63 0.93 0.96 0.93 0.9 0.96 0.96 0.93 0.96 0.96 0.96 1
(0.04) (0.03) (0.02) (0.03) (0.05) (0.01) (0.03) (0.02) (0.02) (0.02) (0.02)

Wii Wheel -0.61 0.9 0.92 0.89 0.89 0.93 0.95 0.91 0.94 0.94 0.92 0.93 1
(0.05) (0.06) (0.04) (0.06) (0.06) (0.03) (0.02) (0.03) (0.02) (0.02) (0.05) (0.04)

Wii Motion -0.61 0.91 0.94 0.91 0.89 0.94 0.95 0.92 0.95 0.95 0.94 0.95 0.92
(0.04) (0.04) (0.02) (0.04) (0.05) (0.03) (0.03) (0.03) (0.02) (0.02) (0.02) (0.02) (0.03)
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