Salesforce Compensation: An Analytical and Empirical Examination of the Agency Theoretic Approach

SANJOG MISRA
William E. Simon School of Business, University of Rochester, Rochester, NY 14627, USA
E-mail: misra@simon.rochester.edu

ANNE T. COUGHLAN
Kellogg School of Management, Northwestern University, 2001 Sheridan Road, Evanston, IL 60208-2008, USA
E-mail: a-coughlan@kellogg.northwestern.edu

CHAKRAVARTHI NARASIMHAN
Olin School of Management, Washington University in St. Louis, Campus Box 1133, St. Louis, MO 63130, USA
E-mail: narasimhan@olin.wustl.edu

Abstract. Since the papers of Basu et al. (1985) and Lal and Srinivasan (1993), marketing academics have been interested in the design and implementation of optimal compensation plans. The literature has focused on agency theory as a foundation to help describe and understand this process. Although there has been much theoretical work on this topic, empirical evidence to support this theory remains sparse. Studies by Coughlan and Narasimhan (1992) and John and Weitz (1988, 1989) have found some early evidence that supports agency theory.

In this paper we revisit the issue of salesforce compensation on both theoretical and empirical fronts. On the theory side we build a game theoretic model of salesforce compensation that accounts for risk aversion on the part of both the principal and the agent. We further show that accounting for the firm size within the analytical framework yields new insights into the nature of compensation design.

The results obtained from our model, while substantiating past findings, offer some new insights into the compensation design process. In particular we find that firm demographics play an important role in the design of the optimal compensation scheme. We then use two datasets collected ten years apart by the Dartnell Corporation to investigate and test hypotheses generated by our model and the extant literature. Our results show that the basic tenets of agency theory continue to hold over time and that our new theoretical hypotheses are consistent with the data. Using the two datasets we also find that inter-temporal changes in salesforce compensation coincide with the advent and adoption of new technologies. Our research thus adds to our substantive knowledge of the drivers of salesforce compensation, while adding to the theoretical structure through taking account of the possibility of principal risk aversion.

Key words. salesforce compensation, salesforce management, agency theory, game theory

JEL Classification: M520, M310

*Corresponding author.
1. Introduction

Despite the emergence of new technologies and selling formats, the importance of the salesforce as a marketing tool remains undiminished. If anything, intensifying competition and the value placed by consumers on face-to-face contact has focused even more attention on the management of salesforces. Possibly the most critical element in this process is the design and implementation of an efficient and effective salesforce compensation plan.

From the analytic foundation in Farley (1964), Weinberg (1975), and many intervening pieces of research using a certainty perspective, the mechanics of compensation design have been studied by marketers (Basu et al., 1985; Lal and Srinivasan, 1993; Joseph and Thevaranjan, 1998) and economists alike (Holmstrom, 1979; Holmstrom and Milgrom, 1987) more recently from an agency theoretic perspective.\footnote{For reviews of the salesforce compensation literature, see Coughlan and Sen (1989) and Coughlan (1993).} In the past decade or so there have also been some attempts to empirically validate the theoretical results derived in the aforementioned papers. Using data from the Dartnell Corporation, Coughlan and Narasimhan (1992) find support for many hypotheses drawn from agency theory and other economics-based theoretical research. Others looking at the issue empirically include John and Weitz (1988, 1989), Krafft, Lal, and Albers (1996), and Joseph and Kalwani (1998), among others.

In this paper, we propose an analytic model of salesforce compensation that extends the Lal and Srinivasan (1993) framework by examining the case of a risk-averse principal (firm) as well as a risk-averse agent (salesperson). In particular our formulation allows us to capture the impact of firm size on the compensation contract offered to the salesperson. This is important because a key aspect of the salesforce compensation data is the high degree of heterogeneity in the size of the firms. The hypotheses we derive are consistent with those derived in earlier agency-theoretic salesforce compensation models, but add some not previously available. We use our model and the extant literature to propose a more complete set of testable hypotheses concerning optimal total pay and the optimal split between salary and incentive pay in the salesforce.

We follow this with an empirical investigation of the factors governing salesforce compensation based on our analytical model. Our empirical analysis helps substantiate (or refute) findings in the extant literature (e.g., Coughlan and Narasimhan, 1992; John and Weitz, 1989). However, our work does more than simply replicate earlier results. First, we are able to test hypotheses unavailable in earlier studies, and thus expand our knowledge of the drivers of salesforce compensation. Second, we provide a longitudinal view on the drivers of salesforce compensation, letting us compare and contrast today versus 10 years ago to see if compensation is motivated by the same factors over time. Our findings reveal that changes in the technological and managerial environment are related to changes in the design of salesforce compensation. In particular we note that the wide spread use of information technology and the decrease in costs of such technology has coincided with firms moving to more incentive based compensation plans. Third, by jointly estimating regressions using (a) total pay and (b) the salary-to-total-pay ratio as dependent variables we are able to more precisely estimate the impact of the exogenous drivers on the incentive contracts.
SALESFORCE COMPENSATION

The rest of the paper is organized as follows: In the next section we review the salesforce compensation literature and follow this with our analytical model. After this we describe our data and variable operationalizations. Following this, we present our estimation results and a discussion of our findings. We conclude with a summary and directions for future research.

2. Literature review

The existing analytical literature has focused on the design of the compensation plan in the presence of moral hazard (Holmstrom, 1979; Shavell, 1979) arising from private information and lack of observability of salesperson effort. Basu et al. (1985) discuss a two-part compensation scheme consisting of salary and a commission on sales, and provide a theoretical basis for an analysis of the impact of uncertainty, risk aversion, sales response effectiveness, marginal cost, and other parameters on the nature of the compensation scheme. Lal and Staelin (1986) extend this by presenting an analysis that relaxes the symmetric information assumption. Rao (1990) provides an alternate approach to the problem. He analyzes the issue using a self-selection framework with a heterogeneous salesforce. The salesperson picks a commission level and a quota based on her utility maximizing mechanism. While these papers do investigate optimal compensation, given a linear compensation scheme, they do not show the optimality of such a scheme in general.

In a path-breaking paper, Holmstrom and Milgrom (1987) show that, under certain assumptions, such linear compensation schemes can indeed be optimal. They do so using a dynamic framework with negative exponential utilities and an underlying Brownian motion that reflects the stochasticity of sales. Lal and Srinivasan (1993) use this framework to model salesforce compensation and gain some interesting insights into single-product and multiproduct salesforce compensation. Holmstrom and Milgrom (1991) further introduce a theory of multitasking on the part of the agent, in which agents perform a number of tasks that have different disutilities and afford them varying payoffs.

More recent analytic research aims at applying and extending the classic agency model in various directions, including competition, price delegation, multiple (substitutable or complementary) products, monitoring, and customer satisfaction measures of performance (see Bhardwaj, 2001; Zhang, 1994; Joseph and Thevaranjan, 1998; Hauser, Simester, and Wernerfelt, 1994).

A number of empirical research studies have attempted to validate theoretical findings generated in the studies discussed above. Interestingly, a large portion of the empirical work done in the area of salesforce compensation is based on transaction cost analysis-Williamson (1975), John and Weitz (1989) and Anderson and Oliver (1987) are good examples. In another important empirical study, John and Weitz (1988) find significant discord between agency theoretic hypotheses and empirical results. In particular they find significant evidence that is contrary to agency theoretic predictions about the relation between risk, uncertainty, effort effectiveness and base sales and the salary/commission structure. Ghosh and John (2000) conduct a series of experiments to explore the insurance-incentive tradeoff contained in the agency theory models. They find general support for the agency theory predictions only in the case when the agents are risk-averse and their effort is not
verifiable. They conclude by stating that further work is warranted to explore why the theory’s predictions do not hold when the agents are risk-neutral or when the effort exerted is verifiable.

However, other investigations have been more successful in validating agency theory results. Coughlan and Narasimhan (1992) use Dartnell Corporation survey data from 286 companies in 39 different industries and find broad support for the agency-theoretic approach. Another study by Lal, Outland, and Staelin (1994) uses data from a survey of salespeople from three sales groups within a single organization. Their results also strongly support agency-theoretic hypotheses. Joseph and Kalwani (1998) study the impact of environmental uncertainty on the design of compensation plans and find strong support for the prescriptions of agency theory as well. For a good overview of the literature on incentives, please see Pendergast (1999).

The literature thus provides a broad set of analytically derived prescriptions on optimal compensation-setting, which are by and large supported in empirical studies (with the exception of John and Weitz, 1988). However, some issues remain to be attacked. The issue of whether comparable results can be found over time, i.e., the robustness of the theoretical predictions, has never been investigated; we deal with this in the current paper by analyzing data from the Dartnell Corporation for 1986 and 1996, ten years apart. The theoretical literature has not treated the case of risk aversion on the part of the principal as well as the agent, typically assuming the principal to be risk-neutral—both for analytical tractability and because of a belief that it is the difference between risk attitudes in principal and agent, rather than the absolute levels of risk aversion, that mattered. However, we analyze such a model in this paper, and find that the standard model’s results turn out not to be robust to this change in assumption. The resulting predictions better fit the data on compensation practices as well. Finally, some of the existing empirical literature has considered both optimal total pay setting and the optimal setting of the ratio of salary to total pay, but never in a joint framework that accounts for correlation between the two. We propose an estimation framework based on a simulated method of moments approach that accounts for the correlation between the two dependent variables, the censoring issue in the ratio variable and the existence of heterogeneity across firms.

3. Risk-averse principals and scale effects: Does firm size matter in compensation design?

The current theory on salesforce compensation (and the executive compensation literature in economics, accounting and finance) is based on the assumptions that a risk-neutral firm employs risk-averse salespeople. Consequently the extant theory makes an implicit assumption that a firm’s preferences towards risk have no impact on the design and management of compensation structures.

Assuming that firms are risk neutral has a long tradition in the marketing, finance and economics literature. This assumption, based on Fisher’s separation theorem (1930), argues that an otherwise risk-averse owner will make decisions efficiently (i.e. in a risk neutral manner) and then insure against risk in the financial markets, which are assumed to be perfect. Note that even in Fisher’s realm the owner is not assumed to be risk neutral but
because financial (credit and capital) markets are perfect there is no reason for the firm’s owner to act inefficiently by “distorting” the financial decision with her risk preferences. In other words a firm’s actions will seem risk neutral even if the owner is not. This assumption relies fundamentally on the existence and availability of perfect financial markets and without perfect financial markets the separation theorem breaks down. In fact Stiglitz (2001) posits, in his Nobel lecture, that this is precisely why observed firm behavior does not conform to neo-classical economic theory. He argues that in the face of information asymmetries, weak equity markets, and incentive design issues, firms will tend to act in a risk-averse manner. Stiglitz also adds that this risk aversion cannot be “managed” away and will be reflected in action. He suggests that risk-averse firms make smaller adjustments to variables, the consequences of which are more uncertain. Such risk version is likely to vary across firms. We believe that a key driver of this heterogeneity is firm size and that firm size is related to a firm’s degree of risk aversion. Evidence suggests that there is a strong relation between a firm’s size and its attitude towards risk. This view is shared by researchers in the finance and insurance area. The following is an excerpt from Smith (1995):

“Nevertheless some firms have owners who do not hold well-diversified portfolios. This is most likely the case in firms where ownership is concentrated. Thus in partnerships, proprietorships, and closely held corporations, risk aversion of the firm’s owners can provide an important risk management incentive.”

Further, there is also empirical evidence in the same literature that implies that smaller firms will tend to be risk averse. For example, using a sample of insurance firms, Mayers and Smith (1982) show that larger firms tend to re-insure less. Presumably this reflects a less intense demand for risk-reducing financial investments, which in turn is consistent with a less risk-averse attitude. Conversely, a stronger propensity to re-insure among smaller firms is consistent with a higher degree of risk aversion, suggesting that smaller firms are more risk-averse than larger ones.

Also note that in our survey sample, many respondents are small firms that operate in a local area and are privately held (private 89%, public 11%). Such firms are likely to have less diversified investments than larger firms, and therefore to exhibit risk-avoiding behaviors in the investments in which their capital is concentrated. There is, therefore, adequate reason to believe that these firms are risk averse. Ultimately, compensation design is as much about sharing risk as it is about providing incentives. It would seem then that in any risk sharing arrangement the risk preferences of both parties should be taken into account. At the very least it would seem worthwhile to examine the robustness of existing contract theory by relaxing the assumption of the risk neutral firm.

Firm size is an important moderator of the pay-performance relationship not only in the salesforce context, but also in the empirical executive compensation literature (e.g., Lamer, 1966; Demsetz and Lehn, 1985; Jensen and Murphy, 1990; Hall and Liebman, 1998). Compensation practice thus does vary with firm size. At the same time, this literature also argues that larger firms tend to have a larger scale of operations that could possibly lead to higher variance in their outputs; this is not relevant for compensation policy under an assumption of firm risk neutrality, but becomes important if firms are not purely
risk-neutral. Further complicating this issue is the fact that larger firms might be more efficient, which in turn might lead to higher levels of productivity and effort on the part of their employees. While these arguments describe a complex process, they point towards the importance of understanding the interaction and impact of firm size and firm risk attitude on compensation policy.

The key issue, of course, is not whether firm size matters but how it matters. As mentioned earlier, the compensation literature assumes that firms are risk neutral. The argument behind this assumption is that larger firms have shareholders who can hold diversified portfolios and can therefore spread their risk across negatively correlated signals. While this argument may hold for a handful of large publicly held firms, it does not hold for the vast majority of small businesses (for example, the risk aversion of a sole proprietorship is equal to that of its owner). In other words, if we place firms on a size-continuum, we should expect smaller firms to be more risk averse. We therefore assume that the firm is risk averse and model its risk aversion parameter as an inverse function of firm size.

Note that the case of a risk-neutral firm and a risk-averse salesperson is the basis for the prior analytic literature on agency theory. The case of risk neutrality of both the firm and the salesperson is equivalent to the already-analyzed case of a deterministic sales response function and observable salesperson effort. The case of a risk-averse firm and a risk-neutral salesperson is not an interesting one, because in this case, the firm’s optimal behavior is to “sell the firm” to the salesperson, who will bear residual risk in the firm without being overly conservative. However, the case of risk aversion on the part of both the firm and the salesperson has not been considered in the salesforce literature. By relaxing this assumption, we are thus also contributing to the agency theoretic literature on salesforce compensation.

Firm size has an equally important effect on sales response. Larger firms will not only have better reputations, stronger brands, larger marketing outlays, and more efficient systems, but they will also operate on a larger scale. A salesperson working for a larger firm may be able to sell a broader range of products, or may be able to gain access to potential customers more easily, than the salesperson working for a smaller firm. On the other hand, larger firms may also face greater variability in sales. We term this cumulative effect the “Scale Factor” effect, and model it by allowing firm size to positively affect the sales response function.

3.1. The analytical framework

Based on the above discussion, we posit an agency-theoretic model of salesforce compensation in which not only the salesperson, but also her employer firm, is risk averse. The framework also explicitly allows for firm size to affect both the firm’s risk aversion and its scale of operations. We account for the scale effect by assuming that the sales response function is multiplied by a scale factor, \(g(s) > 0 \), where \(s \) denotes the size of the firm, and where \(g'(s) > 0 \). We further account for the firm’s risk aversion through a constant absolute risk aversion (CARA) formulation with functional form \(R(s) > 0 \). Specifically, we assume that \(R(s) = \rho / g(s) \), where \(\rho \) is the firm risk aversion parameter. This assumption is intuitive in that it implies that the firm’s risk aversion decreases in the scale of its operations: \(R'(s) < 0 \).
We use a linear effort response function with normal errors as is standard in the literature (see Holmstrom and Milgrom, 1987; Lal and Srinivasan, 1993). Thus we can represent sales \((x)\) as

\[
x = g(s)(h + ke + \varepsilon) \quad \text{with } \varepsilon \sim N(0, \sigma^2)
\]

where \(e\) is the salesperson’s effort level, \(h > 0\) is the base level of sales (in the absence of salesforce effort), \(k > 0\) is the marginal productivity of sales effort, and \(\varepsilon\) is the normally distributed error term in the sales response function. This directly implies that

\[
x \sim N(g(s)(h + ke), g(s)^2\sigma^2).
\]

We now describe the salesperson’s optimization program. The salesperson is assumed to be risk averse with constant absolute risk aversion parameter \(r > 0\). The salesperson’s utility function can then be characterized as

\[
U_S = K - \exp(-rW).
\]

\(W\) in (3) represents net wealth, and \(K\) is a positive parameter. This net wealth can be simply described as Total Pay - Cost of Effort. Holmstrom and Milgrom (1987) show that the linear compensation contract is optimal for this problem. Therefore, \(W = \alpha + \beta x - c(e)\), where \(\alpha\) is the salary paid by the firm to the salesperson and \(\beta\) is the commission rate. The function \(c(e)\) denotes the disutility to the salesperson of exerting effort level \(e\), and is captured by the formulation

\[
c(e) = \frac{d}{2} e^2, \quad \text{where } d > 0.
\]

In the above equation \(d\) is the cost of effort parameter. Substituting into the salesperson’s utility function and taking expectations, we arrive at the expected utility function:

\[
E(U_S) = \int_{-\infty}^{\infty} [K - \exp(-r(\alpha + \beta x - c(e)))] f(x) \, dx
\]

Recognizing the relation between (5) and the moment generating function of the normal distribution, we can rewrite (5) as

\[
E(U_S) = K - \exp\left(-r \left\{ \alpha + \beta E(x) - c(e) - \frac{r}{2} \beta^2 \text{Var}(x) \right\} \right).
\]

Maximizing (6) is equivalent to maximizing the term inside the curly brackets. This is known as the certainty equivalent. The salesperson then maximizes her certainty equivalent, \(SCE\), which can be written as

\[
SCE = \alpha + \beta [g(s)(h + ke)] - \frac{d}{2} e^2 - \frac{r}{2} \beta^2 g(s)^2\sigma^2.
\]
The salesperson maximizes this expression with respect to e, which gives us the following incentive compatibility (IC) condition defining the level of effort the salesperson will exert:

\[(IC) \quad \beta g(s) k - de = 0 \iff e = \frac{\beta g(s) k}{d}.\]

In addition to the incentive constraint, the firm also has to ensure that the salesperson makes at least her reservation utility. This can be reflected through the individual rationality (IR) constraint, described by:

\[(IR) \quad SCE \geq W_0,\]

where W_0 is the minimum certainty equivalent of the salesperson (or equivalently, her opportunity cost of time). The (IC) and (IR) constraints are both taken into account by the firm in its own profit maximization problem.

The firm is assumed to be a risk-averse profit-maximizing entity, also characterized by a CARA utility function. In particular, we assume that the firm’s risk aversion is captured by the function $R(s)$. We also assume that the firm faces a constant marginal cost, and without loss of generality we set that marginal cost equal to zero. One can then interpret sales as being represented in dollar terms. Following a similar logic as in the salesperson’s case, the firm’s certainty equivalent can then be denoted by

\[FCE = (1 - \beta)[g(s)(h + ke)] - \alpha - \frac{R(s)}{2}(1 - \beta)^2 g(s)^2 \sigma^2.\] (8)

The firm maximizes FCE subject to the constraints imposed by the contracting scenario. In the first best case, this involves only the individual rationality (IR) constraint, while in the second best case, both the individual rationality (IR) and incentive compatibility (IC) constraints need to be satisfied. The solutions and their interpretation are discussed in detail below.

3.2. The first best solution

In the first best solution, the firm has the ability to observe and hence induce any desired level of effort by the salesperson. In previous research, such a scenario is usually shown to result in a forcing contract. However, this result does not immediately follow when the principal is risk averse.

In the first best world the firm’s problem is to maximize FCE over e and β. However the firm does have to meet the (IR) constraint. We assume that the (IR) constraint is binding, implying that $\alpha = W_0 + c(e) + \frac{r}{2} \beta^2 g(s)^2 \sigma^2 - \beta[g(s)(h + ke)]$. Now substituting α into FCE and simplifying, we obtain the total certainty equivalent:

\[TCE = g(s)(h + ke) - \frac{d}{2} e^2 - \left(\frac{r}{2}\right) g(s)^2 \beta^2 \sigma^2 - \left(\frac{R(s)}{2}\right) g(s)^2 (1 - \beta)^2 \sigma^2 - W_0.\] (9)
Maximizing this with respect to β and e yields:

$$\beta^* = \frac{R(s)}{R(s) + r} = \frac{\rho}{\rho + rg(s)}; \quad e^* = \frac{kg(s)}{d}.$$ \hspace{1cm} (10)

This pair reflects the Pareto-optimal risk sharing arrangement between the firm and the salesperson. The value of β^* also represents the lower bound on the commission rate. Any sharing rule with a β below this would not be acceptable to the salesperson (it would violate the (IR) constraint). Notice that sales response function uncertainty (via σ) does not play a role, since effort is perfectly observable. The sharing rule (β^*) and effort have one common element, viz., firm size. Also notice that β^* is zero for $\rho = 0$ (a risk-neutral firm), while for any $\rho > 0$ (a risk-averse firm), the optimal compensation contract must include commissions. Further, $\frac{\partial \beta^*}{\partial \rho} > 0$, and $\beta^* \to 1$ as $\rho \to \infty$. This is in contrast to the risk-neutral case, where many contracts (including the forcing contract) are possible.\footnote{The forcing contract is in fact a special case of our model, obtained by setting $\rho = 0$.}

3.3. The second best solution

While the first best case describes an ideal scenario, in reality the effort of the salesperson is not perfectly observable and hence not contractible. In the second best world, the firm therefore cannot induce the salesperson to put in the first best effort. This leads to a moral hazard problem (since the salesperson now has an incentive to shirk) that causes the firm to take account of the incentive compatibility constraint (IC). Substituting this constraint (implicitly defined by $e = \frac{kg(s)}{d}$) into the maximization problem depicted in (9), we have

$$TCE = g(s)\left(h + \frac{g(s)\beta^2 k^2}{d} \right) - \frac{g(s)^2 \beta^2 k^2}{2d} - \left(\frac{r}{2} \right) g(s)^2 \beta^2 \sigma^2$$

$$- \left(\frac{R(s)}{2} \right) g(s)^2 (1 - \beta^2) \sigma^2 - W_0.$$ \hspace{1cm} (11)

This problem is similar to the Lal and Srinivasan (1993) problem except for the penultimate term, which arises due to the relaxation of the assumption regarding the principal’s risk neutrality. Maximization of TCE with respect to β gives us

$$\beta^* = \frac{k^2 + dR(s)\sigma^2}{k^2 + (d(r + R(s))\sigma^2)} = \frac{g(s)k^2 + d\rho\sigma^2}{g(s)k^2 + (d(g(s)r + \rho)\sigma^2)}$$

and

$$e^* = \frac{\beta^* kg(s)}{d}.$$ \hspace{1cm} (12)

Note that when the firm can observe the salesperson’s effort (in the first-best solution, given by (10)), the salesperson exerts more effort and the commission rate is lower than when the firm cannot observe the salesperson’s effort (in the second-best solution, given
by (12)). Also note that when $\rho = 0$, we obtain the same results as Lal and Srinivasan (1993). We can use the fact that $SCE = W_0$ to obtain the optimal α, which is now described as

$$\alpha^* = W_0 + \frac{d}{2} (e^*)^2 + \frac{r}{2} g(s)^2 (\beta^*)^2 \sigma^2 - \beta^* g(s)(h + ke^*).$$

Total expected pay is $T^* = \alpha^* + \beta^* g(s)(h + ke^*)$, which can be simplified to

$$T^* = W_0 + \frac{d}{2} e^{*2} + \frac{r}{2} g(s)^2 \beta^* \sigma^2. \quad (13)$$

This equation highlights the fact that the salesperson’s total income is a sum of the opportunity cost of his time (W_0), the cost of his effort ($\frac{d}{2} (e^*)^2$), and the risk premium ($\frac{r}{2} g(s)^2 \beta^* \sigma^2$).

We can also compute the ratio of salary to total pay as

$$\pi^* = \frac{\alpha^*}{\alpha^* + \beta^* g(s)(h + ke^*)}. \quad (14)$$

This ratio has widely been used as a dependent measure in a number of empirical studies (see Coughlan and Narasimhan, 1992; Lal, Outland and Staelin, 1994).

3.4. Discussion of comparative statics

Before proceeding further, we first analyze some of the comparative statics that emerge from our solution. In particular, we are interested in the effects of various parameters on total pay (T^*) and the ratio of salary to total pay (π^*), since these are the dependent variables used in our empirical analysis. Table A describes the comparative statics of T^* and π^* with respect to the exogenous variables in the model. Appendix A presents the detailed derivation of the comparative static effects. While most of our comparative statics are consistent with those found in the extant literature (e.g., Lal and Srinivasan, 1993), some are not. Since the comparative statics with respect to salesperson risk aversion, opportunity cost and the base level of sales are the same as found in the extant literature, we do not discuss them here.\(^3\)

However, Table A does offer some new insights.

First, we predict that firm size has a positive effect on total pay, and a negative effect on the ratio of salary to total pay. In our model, firm size has two effects: larger firms have higher sales per salesperson (because our sales response function is modeled as $x = g(s)(h + ke^*)$), and larger firms are less risk averse than smaller firms. Note from (1) that firm size affects the salesperson’s marginal productivity of effort. Therefore, the salesperson puts in a higher level of effort and, to compensate for this effort, total pay

3 The reader is referred to Basu et al. (1985), Lal and Srinivasan (1993) and Lal and Staelin (1986) for more details.
must increase. Because even baseline sales are larger at larger firms, a large firm also optimally gives the salesperson a more incentive-heavy pay plan than that offered by a smaller firm.

Second, the inclusion of the firm’s risk aversion and scale effects allows us to investigate how they affect optimal compensation in the model. It is not surprising that an increase in the firm’s risk aversion parameter, ρ, tends to increase the predicted commission rate (see equation (12)). Consequently, this also results in an increase in the optimal level of effort and ultimately in the total compensation paid to the salesperson. Further, a more risk-averse firm pays a lower salary than a less risk-averse firm does. Thus, more risk-averse firms rely proportionately more heavily on incentives. Another important effect of modeling the firm as a risk-averse entity is that although the signs of many of the comparative statics (e.g., salesperson risk aversion) are the same as those in earlier work, the magnitude of their impact is now moderated by the firm’s risk aversion parameter.

The third new result pertains to the effect of uncertainty (σ^2) on total pay. Note that we can write total pay as the sum of the reservation utility, cost of effort and the risk premium. That is:

$$T^* = W_0 + \frac{d}{2}e^* + \frac{r}{2}g(s)^2\beta^*\sigma^2$$

From equation (12), we can see that both β^* and e^* are decreasing in σ^2. If $\rho = 0$, then it can be shown that T^* is also decreasing in σ^2 (See Lal and Srinivasan, 1993). However, if
\(\rho \) is sufficiently large, total pay is increasing in \(\sigma^2 \). In economic terms, this implies that if the principal is sufficiently risk averse, an increase in uncertainty leads to higher total pay due to an increase in the risk premium caused by the incremental uncertainty.

The fourth result of note concerns the impact of marginal productivity \((k) \) and the cost of effort \((d) \) on the ratio of salary to total pay \((\pi) \). Like Lal and Srinivasan (1993), we find that these two effects cannot be signed unconditionally. Lal and Srinivasan show that for a high base level of sales (i.e. \(h \) large enough) the effects can be determined (i.e. \(\frac{\partial \pi}{\partial k} < 0, \frac{\partial \pi}{\partial d} > 0 \)). In our more comprehensive modeling structure, assuming a large \(h \) alone is not sufficient to guarantee the signs of these effects, but under most reasonable parameter values, we also find that the ratio of salary to total pay falls with \(k \) and rises with \(d \).

The new insights presented above help us gain additional insights into the drivers of salesforce compensation. While affirming the standard agency theoretic literature findings, we have also underlined the complexity of the interactions between these variables. In some cases it might indeed be difficult to isolate the effect of the variables in question. Clearly, however, the size and risk attitude of the firm cannot be trivially assumed away.

4. Data and variable operationalizations

To test the implications of the theoretical model, we need to operationalize the key constructs. We now describe our dataset and the operationalization of our measures.

The data come from the Dartnell Corporation’s 1996 salesforce compensation survey (published in 1998). This is an annual survey of salesforce managers, querying them about their compensation practices and the characteristics of their salespeople. The earlier Coughlan and Narasimhan (1992) paper used Dartnell’s 1986 data. Thus, this investigation provides an intriguing opportunity to investigate the dynamic robustness of salesforce compensation practices across time in a comparable set of respondents.

However, some of the content and list of questions in the 1996 survey differ from those in the 1986 survey. First, entire sections on Quotas and Payment Horizon have been dropped. In our discussions with Dartnell, no particular reason was given for this change; the deletion was evidently purely based on the questionnaire’s length constraints. While these differences make a fuller comparison between our analysis and that in Coughlan and Narasimhan (1992) impossible, they are only tangentially related to the key constructs used in this study and in our opinion do not radically change the nature of results. Our analysis therefore uses both datasets (1986 and 1996) to estimate our new models and thus facilitates a clear understanding of the dynamic changes in U.S. salesforce compensation practices. Beyond this, the dataset permits us to test additional hypotheses not tested in the earlier work, especially the effects of firm size.

4 Specifically, for

\[
\rho > \left(\frac{g(s)}{2k} \right) \left(\sqrt{8k^4 + 8dk^2 + \sigma^4 + \sigma^2} - 2k^2 - dr\sigma^2 \right).
\]

See Appendix A for details of the derivation.

5 For details of the 1986 survey and data, please see Coughlan and Narasimhan (1992).
Table 1. Summary statistics.

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Std. dev.</td>
</tr>
<tr>
<td>Total pay (thousand dollars)</td>
<td>50.07</td>
<td>25.08</td>
</tr>
<tr>
<td>Salary/total pay (proportion)</td>
<td>0.61</td>
<td>0.33</td>
</tr>
<tr>
<td>Volume (hundred thousand $)</td>
<td>3.47</td>
<td>6.42</td>
</tr>
<tr>
<td>Calls to close (number)</td>
<td>5.67</td>
<td>10.18</td>
</tr>
<tr>
<td>Service (years)</td>
<td>7.29</td>
<td>4.91</td>
</tr>
<tr>
<td>Training length (months)</td>
<td>4.64</td>
<td>4.56</td>
</tr>
<tr>
<td>Turnover (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>16.2%</td>
<td>54.2%</td>
</tr>
<tr>
<td>Usual</td>
<td>58.6%</td>
<td>14.8%</td>
</tr>
<tr>
<td>High</td>
<td>25.2%</td>
<td>31.0%</td>
</tr>
<tr>
<td>Industrial products or consumers (1/0)</td>
<td>72%</td>
<td>55%</td>
</tr>
<tr>
<td>Firms</td>
<td>404</td>
<td>286</td>
</tr>
</tbody>
</table>

4.1. Data description and discussion

Table 1 provides descriptive statistics of the key variables used in our analysis. We find that while total pay has increased, the ratio of salary to total pay has marginally declined over the ten years between the surveys used. During the same period training costs have declined, training length has increased, as has the average tenure of a salesperson. Added to these is the fact the average number of calls that it takes to close a sale has also been declining. In the next few paragraphs we discuss the variables used in our empirical analysis in more detail.

Table 2 reports the distribution of firm sizes in the 1986 and 1996 samples. The more recent sample contains a greater proportion of larger firms, but is not extremely different in the range of firm sizes represented.

Table 3 presents summary statistics for the different experience levels of salespeople in the firms surveyed in 1986 and 1996. The U.S. Consumer Price Index (CPI) rose 43.2 percent over the 1986–1996 period, while average total pay in the Dartnell samples rose by 51.6 percent, 46.5 percent, and 49.0 percent for experienced, semi-experienced, and trainee salespeople, respectively. Thus, salesforce pay increases overall beat the inflation rate by several percentage points over this time period. Concurrently with the increase in total pay, all three classes of salespeople received a lower proportion of total pay in salary in 1996 than in 1986.

The dependent variables we use in our analysis are Total Pay and the Ratio of Salary to Total Pay. The ratio of salary to total pay has been used in previous studies.
Table 2. Distribution of firm size.

<table>
<thead>
<tr>
<th>Gross revenues (million)</th>
<th>Size</th>
<th>Number of firms</th>
<th>1996 percent</th>
<th>Number of firms</th>
<th>1986 percent</th>
</tr>
</thead>
<tbody>
<tr>
<td><5</td>
<td>0</td>
<td>95</td>
<td>23.5</td>
<td>102</td>
<td>35.7</td>
</tr>
<tr>
<td>5-25</td>
<td>1</td>
<td>125</td>
<td>30.9</td>
<td>110</td>
<td>38.5</td>
</tr>
<tr>
<td>25-50</td>
<td>2</td>
<td>48</td>
<td>11.9</td>
<td>29</td>
<td>10.1</td>
</tr>
<tr>
<td>50-100</td>
<td>3</td>
<td>29</td>
<td>7.2</td>
<td>19</td>
<td>6.6</td>
</tr>
<tr>
<td>100-250</td>
<td>4</td>
<td>30</td>
<td>7.4</td>
<td>11</td>
<td>3.8</td>
</tr>
<tr>
<td>250-500</td>
<td>5</td>
<td>15</td>
<td>3.7</td>
<td>3</td>
<td>1.0</td>
</tr>
<tr>
<td>500-1000</td>
<td>6</td>
<td>30</td>
<td>7.4</td>
<td>8</td>
<td>2.8</td>
</tr>
<tr>
<td>1000-2000</td>
<td>7</td>
<td>12</td>
<td>3.0</td>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>2000-5000</td>
<td>8</td>
<td>9</td>
<td>2.2</td>
<td>2</td>
<td>0.7</td>
</tr>
<tr>
<td>>5000</td>
<td>9</td>
<td>11</td>
<td>2.7</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>404</td>
<td></td>
<td>286</td>
</tr>
</tbody>
</table>

Table 3. Summary of pay statistics by level of seniority.

<table>
<thead>
<tr>
<th></th>
<th>1996</th>
<th>1986</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total pay ($000)</td>
<td>Salary/Total pay</td>
</tr>
<tr>
<td>Experenced (mean)</td>
<td>63.34 (30.88)</td>
<td>0.567 (0.33)</td>
</tr>
<tr>
<td>Semi-experienced</td>
<td>47.62 (22.07)</td>
<td>0.598 (0.32)</td>
</tr>
<tr>
<td>Trainee</td>
<td>35.66 (12.34)</td>
<td>0.661 (0.33)</td>
</tr>
<tr>
<td>Average</td>
<td>50.07 (25.08)</td>
<td>0.605 (0.33)</td>
</tr>
</tbody>
</table>

We use several independent variables in our analysis that relate to the agency theory constructs used in our model. The relation between our variables and these constructs is summarized in Table 4. For the sake of brevity we do not repeat the details of the table in the text. Note, however, that the variables indicated by an asterisk in Table 4 are the same as those used by Coughlan and Narasimhan (1992). The set of variables we use gives us indirect evidence on the role of firm-level risk aversion in setting compensation.

One key variable that impacts the structure and nature of the sales compensation contract is firm size. An implicit assumption made in most empirical studies is that firms are similar in terms of the scale of operations. However, this is often not the case, as Table 2 shows.
Table 4. Variable descriptions.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
<th>Expected sign</th>
<th>Theory construct</th>
<th>Salary/Total pay</th>
<th>Total pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dependent variables</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Salary/Total pay*</td>
<td>Ratio of salary pay to total pay. Equals one for all salary salesforces and zero for all commission salesforces. Reported by level of seniority.</td>
<td></td>
<td></td>
<td>Salary/Total pay</td>
<td>Total pay</td>
</tr>
<tr>
<td>Total pay*</td>
<td>Total Compensation paid to salesperson in thousands of dollars. Reported by level of seniority.</td>
<td></td>
<td></td>
<td>Salary/Total pay</td>
<td>Total pay</td>
</tr>
<tr>
<td>Variable</td>
<td></td>
<td></td>
<td></td>
<td>Salary/Total pay</td>
<td>Total pay</td>
</tr>
<tr>
<td>Size</td>
<td>The size of the firm. Reported as a categorical variable from one through 10. The first category represents company wide sales of $5 million while category ten reflects sales of $5 billion.</td>
<td>Firm size</td>
<td>−</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Calls to close*</td>
<td>The average number of calls it takes a salesperson to close a sale</td>
<td>Uncertainty</td>
<td>+</td>
<td>−</td>
<td></td>
</tr>
<tr>
<td>Service*</td>
<td>The Average length of service of a salesperson in years.</td>
<td>Opportunity cost</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Training length*</td>
<td>The average length of training (in months) a new salesperson goes through before entering the active salesforce.</td>
<td>Marginal productivity</td>
<td>−</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Turnover*</td>
<td>Indicator of relative turnover in the firm. Measured as a three point scale indicating turnover was lower, same as or higher than usual in the past two years.</td>
<td>Opportunity cost</td>
<td>+</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Senior*</td>
<td>Indicator for Experienced Salesperson. A binary variable with one indicating that the salesperson has significant sales experience and the ability to handle important territories and/or key accounts independently.</td>
<td>Marginal productivity</td>
<td>−</td>
<td>+</td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page)
Table 4. (Continued).

<table>
<thead>
<tr>
<th>Description</th>
<th>Theory construct</th>
<th>Expected sign</th>
<th>Salary/Total pay</th>
<th>Total pay</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>Indicator for a</td>
<td>Marginal productivity</td>
<td>–</td>
<td>+</td>
</tr>
<tr>
<td>semiexperienced salesperson. A binary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>variable with one indicator that the</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>salesperson has enough sales experience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>and the ability to handle a territory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>independently.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor 1</td>
<td>Factor 1 (factor</td>
<td>Control variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derived from a factor analysis of expenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incurred by firms on lodging/travel/marketing expenses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Factor 2</td>
<td>Factor 2 (factor</td>
<td>Control variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>score)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>derived from a factor analysis of expenses</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>incurred by firms on lodging/travel/marketing expenses.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industrial dummy</td>
<td>Dummy Variable</td>
<td>Control variable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>equal to one if the firm deals in</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>industrial products or sells</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>to industrial consumers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Variable was used by Coughlan and Narasimhan (1992).

This distribution of firms lends some credible justification for the framework used in the theoretical analysis.

We measure size of the firm by its dollar sales volume, which Dartnell’s survey publishes as a categorical variable (as in Table 3). Based on our theory, we predict that larger firms will offer higher total pay as well as a lower ratio of salary to total pay.

5. Estimation issues

5.1. The methodology

The dependent variable π (proportion of salary to total pay) is bounded between zero and one by virtue of being a proportion. Hence standard least square methods will yield biased estimates. To correct for this we use the Double Limit Tobit proposed by Coughlan and Narasimhan (1992). This approach assumes that the data is censored at both tails (specifically
at 0 and 1. Since by definition π cannot exceed one or fall below zero it seems appropriate to consider the data censored. Since there are no structural bounds on the nature of the Total Pay variable we can use ordinary least squares (OLS) to estimate the relevant effects.\footnote{Please see Figures 1 and 2 in Appendix B for a depiction of the distribution of the two dependent variables across the firms in the data for 1996.}

Since our theory suggests that the effect of size on compensation is complicated, we allow the size effect to vary across firms by allowing a normal mixing distribution to be placed on the parameter that measures the impact of size on compensation.\footnote{As an alternative, we tested various functional forms for the specification of firm size, and found no qualitative differences in the results. Further details of the estimation procedure are included in Appendix B.} In addition, we also include a random effect on the intercept to account for other sources of potential heterogeneity. One last econometric issue is the correlation that exists between total pay and the ratio of salary to total pay. The earlier empirical work in this area (such as Coughlan and Narasimhan, 1992; Outland, Lal, and Staelin, 1994) ignores this issue. By the very definition and structure of the constructs and timing of the decision, there exists a correlation between the two regression errors. Allowing for such correlation would improve the efficiency of the estimation. We adopt a GMM procedure, described in Appendix B, to account for this correlation. To summarize, our estimation framework:

(a) accounts for the double limit tobit nature of the salary to total pay variable;
(b) allows for heterogeneity in the intercept and firm size effects; and
(c) allows for more efficient estimation by allowing for the “seemingly un-relatedness” (correlation) of the two dependent variables.

6. Empirical results and discussion

Our empirical analysis finds strong support for the tenets of agency theory in general and our theoretical model in particular. Most of the variables exhibit significant effects and are generally in the direction we expect. Moreover, our approach to modeling the two aspects of compensation (Total Pay and Salary/Total Ratio) jointly results in increased levels of efficiency.\footnote{While details are not reported here because of space concerns, we find that estimating the regressions separately results in significantly higher GMM objective functions and standard errors.} This improved efficiency is a direct result of accounting for the inter-equation correlation, which is negative and significant in both datasets. Any unobserved variable that affects the total pay equation positively (negatively) would imply that the salary/total pay disturbance would be negative (positive) in general. While it is theoretically possible for the errors to be positively correlated, we suspect that in general the correlation is likely to be negative.

6.1. Temporal shifts in compensation design

Our data offer a unique opportunity to test whether compensation practices evolve over time due to changes in economic conditions and firm characteristics. To ascertain whether
there were any differences between the 1986 and 1996 data at a global level, we conducted a pooling test based on difference of Hansen’s J-statistics (Hansen, 1982; Ogaki, 1993). The combined J-statistics for the two datasets was 2720.42 while the pooled data model obtained a J-statistic of 2740.91. The difference of the two statistics is 20.49 and is asymptotically distributed as χ^2 with one degree of freedom. We therefore conclude that pooling is rejected at less than the 0.0001 level. This finding is significant, as it implies that the dynamics of the 1986 and 1996 data are different. In particular it implies that the effects of the variables included in our model on compensation are different in the 1986 and 1996 datasets.

Comparing the results in Tables 5a and b, we uncover some noteworthy shifts in compensation design over time. For example, the compensation differences between experienced and less experienced salespeople are less pronounced in 1996 than in 1986. While a senior sales rep still receives approximately $15,500 more in total pay than a new sales rep in 1996, the structure of compensation for all reps is more incentive-driven than in 1986. Furthermore, the ratio of salary to total pay of a senior rep is only 7% lower than that of a new rep in 1996, compared to about 10% in 1986, and the incentive differences between senior and intermediate salespeople has been reduced.

We conjecture that the changes in compensation design are related to changes in the technological environment between 1986 and 1996. Perhaps the most dramatic change during this period is the widespread adoption of information technology as a salesforce enhancement tool. During the same time technology became cheaper and monitoring and training methods improved. These changes are reflected in the decline in the training cost measure in Table 1. More recently the trend has continued and salesforce automation software has allowed firms to better track and monitor effort, while the widespread use of the Internet and other electronic communication has increased productivity and lowered training costs. The impact of technology on selling and salesforce management is complex and there exists very little formal research on this topic. Nevertheless, there is enough evidence to claim that technological enhancements in this period have manifested themselves in the form of

(a) Increased productivity (Increased customer information).
(b) Lowered monitoring costs (Easier to track sales people and activities).
(c) A shift from non-selling to selling activities (Time on non-selling activities reduced).

Our theory suggests that each of these would result in an increased emphasis on incentives (relative to salary). This is exactly what our data reveal. Table 3 reveals that, for all levels of experience, compensation is more incentive focused in 1996 compared to 1986. While we do not have data from Dartnell for later years, a similar study done by Sales and Marketing Management in 2001–2002 shows a continued trend towards more incentive leveraged compensation plans. The increased use of the Internet for salesforce automation and management should contribute to a continuation in the trend towards increased incentives.
Table 5. (a) Results from 1986 data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. err.</th>
<th>T-stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary to total pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (mean)</td>
<td>0.6353</td>
<td>0.0397</td>
<td>16.01</td>
<td><.0001</td>
</tr>
<tr>
<td>Intercept (std. dev)</td>
<td>0.3248</td>
<td>0.0145</td>
<td>22.33</td>
<td><.0001</td>
</tr>
<tr>
<td>Size (mean)</td>
<td>−0.0165</td>
<td>0.0094</td>
<td>−1.76</td>
<td>0.0791</td>
</tr>
<tr>
<td>Size (std. dev)</td>
<td>0.0709</td>
<td>0.0053</td>
<td>13.31</td>
<td><.0001</td>
</tr>
<tr>
<td>Calls to close</td>
<td>−0.0037</td>
<td>0.0014</td>
<td>−2.59</td>
<td>0.0101</td>
</tr>
<tr>
<td>Training length</td>
<td>−0.0075</td>
<td>0.0025</td>
<td>−2.96</td>
<td>0.0033</td>
</tr>
<tr>
<td>Service</td>
<td>0.0079</td>
<td>0.0023</td>
<td>3.50</td>
<td>0.0005</td>
</tr>
<tr>
<td>Turnover</td>
<td>−0.0033</td>
<td>0.0125</td>
<td>−0.26</td>
<td>0.7949</td>
</tr>
<tr>
<td>Senior dummy</td>
<td>−0.1001</td>
<td>0.0261</td>
<td>−3.84</td>
<td>0.0002</td>
</tr>
<tr>
<td>Intermediate dummy</td>
<td>−0.0742</td>
<td>0.0271</td>
<td>−2.74</td>
<td>0.0065</td>
</tr>
<tr>
<td>Factor 1</td>
<td>0.1800</td>
<td>0.0143</td>
<td>12.60</td>
<td><.0001</td>
</tr>
<tr>
<td>Factor 2</td>
<td>0.0515</td>
<td>0.0107</td>
<td>4.80</td>
<td><.0001</td>
</tr>
<tr>
<td>Industrial dummy</td>
<td>0.0269</td>
<td>0.0247</td>
<td>1.09</td>
<td>0.2776</td>
</tr>
<tr>
<td>Total pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>20.01</td>
<td>1.5970</td>
<td>12.53</td>
<td><.0001</td>
</tr>
<tr>
<td>Intercept (std.dev)</td>
<td>13.39</td>
<td>1.4570</td>
<td>9.19</td>
<td><.0001</td>
</tr>
<tr>
<td>Size (mean)</td>
<td>2.3516</td>
<td>0.4854</td>
<td>4.84</td>
<td><.0001</td>
</tr>
<tr>
<td>Size (std. dev)</td>
<td>2.9423</td>
<td>0.3951</td>
<td>7.45</td>
<td><.0001</td>
</tr>
<tr>
<td>Calls to close</td>
<td>−0.0454</td>
<td>0.0669</td>
<td>−0.68</td>
<td>0.4978</td>
</tr>
<tr>
<td>Training length</td>
<td>0.2422</td>
<td>0.1144</td>
<td>2.12</td>
<td>0.0351</td>
</tr>
<tr>
<td>Service</td>
<td>0.0366</td>
<td>0.1211</td>
<td>0.30</td>
<td>0.7629</td>
</tr>
<tr>
<td>Turnover</td>
<td>−0.2809</td>
<td>0.6434</td>
<td>−0.44</td>
<td>0.6628</td>
</tr>
<tr>
<td>Senior dummy</td>
<td>15.6032</td>
<td>1.3913</td>
<td>11.21</td>
<td><.0001</td>
</tr>
<tr>
<td>Intermediate dummy</td>
<td>7.9582</td>
<td>1.3176</td>
<td>6.04</td>
<td><.0001</td>
</tr>
<tr>
<td>Factor 1</td>
<td>1.3487</td>
<td>0.6082</td>
<td>2.22</td>
<td>0.0274</td>
</tr>
<tr>
<td>Factor 2</td>
<td>0.0448</td>
<td>0.5724</td>
<td>0.08</td>
<td>0.9377</td>
</tr>
<tr>
<td>Industrial dummy</td>
<td>0.3889</td>
<td>1.3006</td>
<td>0.30</td>
<td>0.7652</td>
</tr>
<tr>
<td>Std. deviation (Salary/Total pay)</td>
<td>0.3142</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. deviation (Total pay)</td>
<td>13.0575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-equation correlation</td>
<td>−0.2058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen’s J-statistic</td>
<td>1112.002</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Continued on next page.)
Table 5. (Continued) (b) Results from 1996 data.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Estimate</th>
<th>Std. err.</th>
<th>T-stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salary to total pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (mean)</td>
<td>0.5434</td>
<td>0.0280</td>
<td>19.41</td>
<td><.0001</td>
</tr>
<tr>
<td>Intercept (std. dev)</td>
<td>0.3149</td>
<td>0.0063</td>
<td>50.20</td>
<td><.0001</td>
</tr>
<tr>
<td>Size (mean)</td>
<td>−0.0152</td>
<td>0.0037</td>
<td>−4.07</td>
<td><.0001</td>
</tr>
<tr>
<td>Size (std. dev)</td>
<td>0.0296</td>
<td>0.0032</td>
<td>9.37</td>
<td><.0001</td>
</tr>
<tr>
<td>Calls to close</td>
<td>−0.0035</td>
<td>0.0008</td>
<td>−4.14</td>
<td><.0001</td>
</tr>
<tr>
<td>Training length</td>
<td>−0.0019</td>
<td>0.0011</td>
<td>−1.63</td>
<td>0.1040</td>
</tr>
<tr>
<td>Service</td>
<td>0.0029</td>
<td>0.0010</td>
<td>2.96</td>
<td>0.0031</td>
</tr>
<tr>
<td>Turnover</td>
<td>0.0105</td>
<td>0.0076</td>
<td>1.38</td>
<td>0.1693</td>
</tr>
<tr>
<td>Senior dummy</td>
<td>−0.0706</td>
<td>0.0203</td>
<td>−3.48</td>
<td>0.0005</td>
</tr>
<tr>
<td>Intermediate dummy</td>
<td>−0.0648</td>
<td>0.0212</td>
<td>−3.05</td>
<td>0.0024</td>
</tr>
<tr>
<td>Factor 1</td>
<td>0.1069</td>
<td>0.0093</td>
<td>11.49</td>
<td><.0001</td>
</tr>
<tr>
<td>Factor 2</td>
<td>0.0187</td>
<td>0.0099</td>
<td>1.89</td>
<td>0.0596</td>
</tr>
<tr>
<td>Industrial Dummy</td>
<td>−0.0267</td>
<td>0.0108</td>
<td>−2.48</td>
<td>0.0132</td>
</tr>
<tr>
<td>Total pay</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercept (mean)</td>
<td>17.2346</td>
<td>1.8360</td>
<td>9.39</td>
<td><.0001</td>
</tr>
<tr>
<td>Intercept (std. dev)</td>
<td>14.9868</td>
<td>4.3555</td>
<td>3.44</td>
<td>0.0006</td>
</tr>
<tr>
<td>Size (mean)</td>
<td>2.2117</td>
<td>0.2906</td>
<td>7.61</td>
<td><.0001</td>
</tr>
<tr>
<td>Size (std. dev)</td>
<td>3.6906</td>
<td>0.5529</td>
<td>6.67</td>
<td><.0001</td>
</tr>
<tr>
<td>Calls to close</td>
<td>0.2180</td>
<td>0.0568</td>
<td>3.84</td>
<td>0.0001</td>
</tr>
<tr>
<td>Training length</td>
<td>0.4101</td>
<td>0.1003</td>
<td>4.24</td>
<td><.0001</td>
</tr>
<tr>
<td>Service</td>
<td>0.1952</td>
<td>0.1126</td>
<td>1.73</td>
<td>0.0835</td>
</tr>
<tr>
<td>Turnover</td>
<td>0.7801</td>
<td>0.8067</td>
<td>0.97</td>
<td>0.3338</td>
</tr>
<tr>
<td>Senior dummy</td>
<td>15.4038</td>
<td>1.2472</td>
<td>12.35</td>
<td><.0001</td>
</tr>
<tr>
<td>Intermediate dummy</td>
<td>7.5190</td>
<td>1.2591</td>
<td>5.97</td>
<td><.0001</td>
</tr>
<tr>
<td>Factor 1</td>
<td>−0.1685</td>
<td>0.5512</td>
<td>−0.31</td>
<td>0.7599</td>
</tr>
<tr>
<td>Factor 2</td>
<td>1.8568</td>
<td>0.5827</td>
<td>3.19</td>
<td>0.0015</td>
</tr>
<tr>
<td>Industrial dummy</td>
<td>1.9897</td>
<td>1.1842</td>
<td>1.68</td>
<td>0.0933</td>
</tr>
<tr>
<td>Std. deviation (Salary/Total pay)</td>
<td>0.3806</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Deviation (Total pay)</td>
<td>23.3581</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inter-equation correlation</td>
<td>−0.2302</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hansen’s J-statistic</td>
<td>1608.417</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6.2. **The impact of firm size**

Some key findings in our results pertain to firm size. First, we find that firm size is a critical determinant of both compensation level and structure. This is evidenced by the fact that the mean effect of firm size is significant (albeit marginally so for the salary/total ratio in 1986) in all models and its coefficient signs are essentially consistent with our theoretical predictions. Specifically, the mean coefficient for firm size is negative in the salary to total pay regression, and larger firms tend to pay more in total, both as per our theory. Second, we observe significant heterogeneity across firms in the way firm size impacts compensation. All effects of firm size also exhibit significant variances which are fairly large. While computations of the posteriors reveal that the marginal effect of size is contrary to our theoretical prediction for a small number of firms, the findings overall support our theoretical predictions and moreover highlight the importance of considering size in investigations of compensation structure. Generally speaking, these findings do, however, underline the need for including firm size and other factors relating to scale and firm risk aversion in theoretical and empirical models of salesforce compensation.

6.3. **The effect of other variables**

As mentioned earlier, most of the coefficient signs are consistent with our theoretical predictions. The variables positively correlated with our theoretical construct of marginal productivity include Senior Dummy, Intermediate Dummy and Training length. We expected each of these to have a positive effect on total pay and a negative effect of the salary to total pay ratio. The results in Tables 5a and b show that our expectations are met and the effects are significant. Interestingly, although our descriptive statistics show an increase in overall pay levels from 1986 to 1996, they clearly show that the incremental premia in total pay due to seniority have not increased, either for intermediate or senior salespeople; a compression effect in pay is evident. Further, the coefficients are smaller in absolute value in the 1996 salary-to-total-pay regression than in the 1986 one. This is consistent with the notion that firms are moving towards more incentive-heavy pay packages, because of better monitoring abilities. Since better monitoring reduces uncertainty in the effort-sales relationship, it leads to increased reliance on incentive pay.

The effect of the outside option on compensation is measured by Service and Turnover. The greater the experience level of the salesforce and the higher the salesforce turnover in the firm, the higher are the opportunity costs for a salesperson (because on average, the salesperson is more skilled, which suggests a greater ability to get another job; and because turnover suggests that people do in fact find other jobs). Correspondingly, one should see a higher salary component and a higher level of total pay for increases in these two variables. The effect of **Service** is positive and significant in the salary-to-total-pay regressions, as predicted: the more experienced is the firm’s salesforce overall, the higher its salespeople’s opportunity cost of time is likely to be, and hence the more certain their pay should be. **Service** also has a marginally significant positive effect on total pay in the 1996 data, again

11 See note “b” in Table A. For details see Technical Appendix.
consistent with the theoretical predictions, but has an insignificant effect on total pay in the 1986 data. The weaker total pay effect could be due to the notion in agency theory that a more certain (more salary-heavy) pay package for a risk-averse salesperson need not be as large as a more leveraged one, because its certainty equivalent value is higher, *ceteris paribus*.

We note that the effect of *Turnover* is insignificant in all of our regressions. There are two possible explanations for this result. On the one hand, it might suggest that the turnover variable is an imperfect proxy for the opportunity cost of a salesperson, leading to our weak results. The other, more plausible, explanation is that our measure of turnover is a very coarse measure and consequently, variation in it does not capture the cross-sectional variation in our dependent variables. Specifically, the Dartnell turnover measure is a short-run measure (of the amount of turnover this year versus last year in the firm), which may not have strong implications for the overall pay structure.

One variable that goes against our theoretical predictions is the *Calls to Close* variable, a proxy for the uncertainty of sales. We follow Coughlan and Narasimhan (1992) in the interpretation of this variable. The average number of calls it takes to close a sale is higher for products and services that have longer selling cycles. In turn, products that exhibit longer selling cycles have weaker effort-sales links and are more likely influenced by other factors. Hence the *Calls to Close* variable acts as a proxy for the uncertainty caused by longer selling cycles and the influence of outside factors. Having said that, we cannot rule out the possibility that *Calls to Close* also acts as a measure of effort costs. Since both the primitive constructs impact the dependent variables in the same way, we cannot empirically disentangle the effects. Under this proxy definition, we expect a higher salary to total pay ratio and also higher levels of total pay in firms with a greater average number of sales calls necessary to close a sale. However, apart from the 1986 total pay regression, where the coefficient is not significant (although weakly in the expected direction), all other effects of this variable are contrary to our hypothesized direction. One explanation for these results is the possibility that *Calls to Close* partially measures the salesforce’s marginal productivity, in the following way. Clearly, a selling job that requires more sales calls to close the sale provides more opportunities to lose the sale, and hence increases the uncertainty in the selling process, all other things equal. A firm’s response to this reality may simply be to focus its more experienced salespeople on the more uncertain accounts, or indeed to hire an overall more experienced salesforce. Under this scenario, theory suggests that the optimal pay plan would promise a higher total pay level, but rely more heavily on incentives, as we find in our results.

The control variables used in our analysis include two factors relating to marketing expenditures by the firms and a dummy representing whether the firm was involved with industrial products, services and/or customers. We find that in general, an increase in supporting marketing expenditures results in higher total pay and higher salary-to-total-pay ratios. These might reflect deliberate actions on the firm’s part to trade off incentives with other sales-supporting activities such as promotions, expense budgets and technology that also support sales. The coefficient of the *Industrial* dummy in the 1996 data is generally in the same direction as those coefficients positively related to marginal productivity. Many firms dealing in industrial products and services require more capable salespeople, and this appears to lead to higher and more incentive-driven compensation packages.
To summarize, the results of our empirical exercise provide strong support for our theoretical model. The results are generally robust from 1986 to 1996, although some predictors are more significant in the 1996 regressions. Firm size, in particular, is shown to be a significant predictor of pay patterns, even in the presence of the other factors considered in prior research. Heterogeneity among firms in their size as well as unobserved factors plays a strong role in the compensation structure.

7. Summary and directions for future research

This paper makes theoretical, methodological, and substantive empirical contributions to the Marketing literature on salesforce compensation. On the theoretical front, we extend the theory presented in Lal and Srinivasan’s (1993) approach to include the possibility of a risk-averse principal (Lal and Srinivasan assume that the principal is risk-neutral while its agent is risk-averse). We are also able to compare the influence of important constructs on incentive pay and total pay across two time periods. We find that while the influences of some of the drivers change across time, the directional impacts across the two time periods are robust. We also find that the trend towards more incentive oriented plans coincides with the advent and adoption of productivity enhancing technologies.

On the substantive empirical front, our results demonstrate the robustness of the general agency theoretic approach to explaining salesforce compensation practices. All of the hypotheses supported in the extant literature continue to hold in the newer data, suggesting that companies find these rules for setting compensation to be broadly applicable across time. However, our results also indicate the value of including firm size in the estimation, as postulated in our analytical extension. As predicted, larger firms pay more than smaller firms, and allocate a larger fraction of pay to incentives.

Future research in the salesforce compensation area can take various directions. Dual distribution combined with team selling, where an employee salesperson and an independent agent join together to make the sales effort, is an interesting and under-researched area. The effect of competition among manufacturers on optimal salesforce compensation is also important to investigate. Considering salesforce effort along with other marketing mix efforts such as promotion could further improve salesforce compensation-setting. These are just a few of the interesting topics that future research (both on the analytic and empirical fronts) can focus on to shed further light on salesforce compensation practices.

Appendix A: Theoretical appendix

I. Comparative statics for total pay

From (13) we have

$$T^* = W_0 + \frac{d}{2} e^{v^2} + \frac{r}{2} g(s)^2 \beta^2 \sigma^2.$$

(A1)
From (12) we also have

$$\beta^* = \left[\frac{k^2 + dR(s)\sigma^2}{k^2 + (d(r + R(s))\sigma^2)} \right] = \left[\frac{g(s)k^2 + d\rho\sigma^2}{g(s)k^2 + (d(g(s)r + \rho)\sigma^2)} \right]$$

(A2)

and

$$e^* = \frac{\beta^*k g(s)}{d}.$$

(A3)

These directly imply that

$$T^* = W_0 + \frac{(k^2 + d\rho\sigma^2)g[s] (d\rho\sigma^2 + k^2 g[s])^2}{2d(d\rho\sigma^2 + (k^2 + d\rho\sigma^2)g[s])^2}.$$

From these, we can proceed to analyze comparative static effects on total pay. Below, the “*” superscript is assumed for all derivatives.

Firm size (s). Note that the sign of \(\frac{\partial T}{\partial s}\) is the same as the sign of \(\frac{\partial T}{\partial g[s]}\). We therefore directly calculate this last expression as:

$$\frac{\partial T}{\partial g[s]} = \frac{(k^2 + d\rho\sigma^2)g[s] (d\rho\sigma^2 + k^2 g[s]) (2d^2 \rho^2 \sigma^4 + 2dk^2 \rho \sigma^2 g[s] + (k^4 + d^2 \rho^2 \sigma^4)g[s]^2)}{d(d\rho\sigma^2 + (k^2 + d\rho\sigma^2)g[s])^3},$$

which is unambiguously positive.

Firm risk aversion (\(\rho\)). The firm’s risk aversion is the ratio of \(\rho\) to \(g[s]\). Here, we examine the impact of a change in \(\rho\) itself on total pay. Clearly, an increase in \(\rho\) increases the firm’s risk aversion.

From (A2), we can show that \(\frac{\partial T^*}{\partial \rho} > 0\). Then it follows that \(\frac{\partial C(e)}{\partial \rho} > 0\). Since

$$\frac{\partial T^*}{\partial \rho} = \frac{\partial C(e)}{\partial \beta^*} \frac{\partial \beta^*}{\partial \rho} + \frac{\partial (g(s)\sigma \beta^*)^2}{\partial \rho},$$

it is straightforward to show that

$$\frac{\partial T^*}{\partial \rho} > 0.$$
Salesforce Compensation

Salesperson risk aversion \((r) \).

\[
\frac{\partial T}{\partial r} = \frac{\sigma^2 g[s]^2(d\rho \sigma^2 + k^2 g[s])^2(d\rho \sigma^2 - (k^2 + dr \sigma^2)g[s])}{2(d\rho \sigma^2 + (k^2 + dr \sigma^2)g[s]^2)}.
\]

The sign of this derivative is the sign of

\[
(d\rho \sigma^2 - (k^2 + dr \sigma^2)g[s]) = g[s]\left[\frac{d^2}{g[s]} - k^2\right].
\]

When the salesperson is more risk-averse than the firm (i.e., \(r < \frac{\rho}{g[s]} \)), this expression is clearly negative and thus \(\frac{\partial T}{\partial r} < 0 \). More generally, \(\frac{\partial T}{\partial r} < 0 \) whenever \(\left(\frac{\rho}{g[s]} - r\right) < k^2 \frac{d\sigma^2}{\rho g[s]}. \)

Variance \((\sigma^2) \). Let \(\sigma^2 \equiv Z \) in our expression for total pay. Then:

\[
\frac{\partial T}{\partial Z} = \frac{rg[s]^2(d\rho Z + k^2 g[s])(d^2 \rho^2 Z^2 + dZ(2k^2 + dr Z)\rho g[s] - (k^4 + dk^2 r Z)g[s]^2)}{2(dZ\rho + (k^2 + dr Z)g[s]^3)},
\]

whose sign is the sign of:

\[
(d^2 \rho^2 Z^2 + dZ(2k^2 + dr Z)\rho g[s] - (k^4 + dk^2 r Z)g[s]^2),
\]

which is a quadratic in \(\rho^2 \). Clearly, when \(\rho = 0 \), the derivative \(\frac{\partial T}{\partial Z} \) is negative, so we seek the larger of the two roots of this quadratic. Solving for the roots, we find that

\[
\rho > \left(\frac{g[s]}{2dZ}\right)\left(\sqrt{8k^4 + 8dk^2 r Z + d^2 r^2 Z^2} - 2k^2 - dr Z\right)
\]

guarantees that \(\frac{\partial T}{\partial Z} > 0 \). This is a strictly positive value for \(\rho \), thus establishing that for “low” values of \(\rho \), total pay falls with the variance in sales, but for high enough values of \(\rho \), total pay in fact rises with the variance in sales.

Opportunity cost \((W_0) \). By simple differentiation: \(\frac{\partial T}{\partial W_0} = 1 > 0 \).

Base sales \((h) \). By observation: \(\frac{\partial T}{\partial h} = 0 \).

Marginal productivity \((k) \). As in (A4), we can show that \(\frac{\partial C(e)}{\partial k} > 0 \) and \(\frac{\partial \beta^*_e}{\partial k} > 0 \). It then follows that \(\frac{\partial T^*}{\partial k} > 0 \).
Cost of effort \((d)\). Noting that \(C(e) = \frac{d e^2}{2} = \frac{(\beta^* k g(s))^2}{2d}\), we can write
\[
\frac{\partial C(e)}{\partial d} = -\frac{(\beta^* k g(s))^2}{d^2} + \frac{2d}{\partial d} \frac{\partial \beta^*}{\partial d}.
\] (A4)

But from (A2) \(\frac{\partial \beta^*}{\partial d} < 0\). Hence \(\frac{\partial C(e)}{\partial d} < 0\), which in turn implies that \(\frac{\partial T^*}{\partial d} < 0\).

II. Comparative statics for salary to total pay ratio

As we have already proven the signs of the comparative statics with respect to total pay, we generally examine here the comparative static effects of various parameters on salary. When the salary comparative-static effect has the opposite sign from the total-pay comparative-static effect, we can unambiguously sign the comparative-static effect of that parameter on the ratio of salary to total pay.

We use another insight to sign several of the derivatives in this section. Recall that the salesperson’s SCE, reported in equation (7) above, is:
\[
SCE = \alpha + \beta [g(s)(h + ke)] - \frac{d}{2} e^2 - \frac{r}{2} \beta^2 g(s)^2 \sigma^2.
\] (7)

In the second-best solution, we know that effort will be allocated by the salesperson according to the rule \(e = \frac{\beta g(s)}{d}\), implying that we can rewrite SCE as follows:
\[
SCE = \alpha + \beta g[s]h + \frac{\beta^2 g[s]^2 k^2}{2d} - \frac{r}{2} \beta^2 g[s]^2 \sigma^2
\]
\[= \alpha + \beta g[s]h + \frac{\beta^2 g[s]^2}{2d} \left(\frac{k^2}{d} - r \sigma^2\right).
\]

The first element of the SCE expression above is simply the salesperson’s salary. The second term is the commission payment the salesperson will get that is due to the intercept term of the sales response function—that is, that will be awarded to the salesperson regardless of what effort s/he exerts or what sales s/he achieves. The last term is the net utility value given to the salesperson as a result of having exerted effort on behalf of the firm, after accounting for the disutility of acting under risk. It comprises (a) the commission payment resulting from the exertion of effort, (b) the disutility from having exerted that effort, and (c) the disutility due to having acted under risk. It is sensible to assume that this net utility term as a whole is positive—in other words, that the marginal utility effect of exerting effort outweighs the disutility of bearing risk. Imposing this assumption implies a restriction on the parameter space\(^{12}\) as follows:
\[
\left(\frac{k^2}{d} - r \sigma^2\right) > 0, \quad \text{or equivalently,} \quad (k^2 - d r \sigma^2) > 0.
\]

\(^{12}\) In our empirical results we find that for a small set of firms the effect of firm size is contrary to our theoretical hypothesis. A possible explanation is that this restriction does not hold for those firms.
The derivative of salary with respect to firm size will be of the same sign as
\[\frac{\partial \alpha}{\partial g[s]} = -\left(\Gamma_1 \Gamma_2 \right) \left(d(d\rho \sigma^2 + (k^2 + d\sigma^2)g[s])^3 \right), \]
where
\[\Gamma_1 = d^2 \rho^2 \sigma^4 + 2dk^2 \rho \sigma^2 g[s] + (k^4 + dk^2 \sigma^2)g[s]^2 \]
and
\[\Gamma_2 = d^2 h \rho \sigma^2 + d(\rho \sigma^2(k^2 - d\sigma^2) + h(k^2 + d\sigma^2))g[s] + (k^4 - dk^2 \sigma^2)g[s]^2. \]

The sign of \(\frac{\partial \alpha}{\partial g[s]} \) is the opposite of the sign of \(\Gamma_2 \). But because we have already established that \((k^2 - d\sigma^2) > 0 \), it is clear that \(\Gamma_2 \) is positive. Hence, \(\frac{\partial \alpha}{\partial g[s]} < 0 \) unambiguously, and because \(\frac{\partial \alpha}{\partial g[s]} > 0 \) was established above, we have that
\[\frac{\partial (\alpha/T)}{\partial g[s]} < 0. \]

Firm risk aversion (\(\rho \)). We have that:
\[\frac{\partial \alpha}{\partial \rho} = \frac{d\sigma^2 g[s]}{(d\rho \sigma^2 + (k^2 + d\sigma^2)g[s])^3} \Gamma_3, \]
where
\[\Gamma_3 = -d^2 h \rho \sigma^2 - d(\rho \sigma^2(k^2 - d\sigma^2) + h(k^2 + d\sigma^2))g[s] + (-k^4 + dk^2 \sigma^2)g[s]^2. \]

Given that \((k^2 - d\sigma^2) > 0 \), \(\Gamma_3 \), is less than zero; since all other terms in \(\frac{\partial \alpha}{\partial \rho} \) are positive, \(\frac{\partial \alpha}{\partial \rho} \) is itself negative. Because \(\frac{\partial \alpha}{\partial \rho} \) is positive, this directly implies that \(\frac{\partial (\alpha/T)}{\partial \rho} < 0. \)

Salesperson risk aversion (\(r \)).
\[\frac{\partial \alpha}{\partial r} = \frac{\sigma^2 g[s]^2(d\rho \sigma^2 + k^2 g[s])G_4}{2(d\rho \sigma^2 + (k^2 + d\sigma^2)g[s])^3}, \]
where
\[G_4 = d^2 \rho \sigma^2 (2h + \rho \sigma^2) + d(\rho \sigma^2(4k^2 - d\sigma^2) + 2h(k^2 + d\sigma^2))g[s] + (3k^4 - dk^2 \sigma^2)g[s]^2. \]
Given that \((k^2 - dr\sigma^2) > 0\), \(\Gamma_4\) is positive; since all other terms in \(\frac{\partial u}{\partial r}\) are positive, \(\frac{\partial u}{\partial r}\) is itself positive. Further, because \(\frac{\partial T}{\partial r}\) is generally negative, this implies that \(\frac{\partial (\alpha/T)}{\partial r} > 0\).

Variance \((\sigma^2)\). Let \(\sigma^2 = Z\) in our expression for salary. Then:

\[
\frac{\partial \alpha}{\partial Z} = \frac{rg[s]^2\Gamma_5}{2(\rho Z + (k^2 + drZ)g[s])},
\]

where

\[
\Gamma_5 = d^3Z^3\rho^2 + d(\rho Z(k^2 - drZ) + 2h(k^2 + drZ))g[s] + (k^4 - dk^2rZ)g[s]^2.
\]

Because \((k^2 - dr\sigma^2) > 0\), \(\Gamma_5\) is positive; since all other terms in \(\frac{\partial u}{\partial Z}\) are positive, \(\frac{\partial u}{\partial Z}\) is itself positive: salary rises as the variance in the sales response function rises. Further, recall that \(\frac{\partial \alpha}{\partial Z}\) is negative when the firm is not “too” risk averse, in which case \(\frac{\partial (\alpha/T)}{\partial Z} > 0\). If, instead, the firm is very risk averse (see the calculation of \(\frac{\partial T}{\partial Z}\) above for the threshold value of \(\rho\)), then \(\frac{\partial \alpha}{\partial Z}\) can be positive. However, even when total pay also rises with the variance in sales, we can show that the ratio of salary to total pay always rises with sales variance. Directly calculating, we get:

\[
\frac{\partial (\alpha/T)}{\partial Z} = \frac{2dr^2g[s]^3\Gamma_6}{(\Gamma_7)^2},
\]

where

\[
\Gamma_6 = d^4hZ^2\rho^2(2k^2W_0 + dZ^2\rho^2) + d^3Z\rho(4k^4W_0Z\rho + dk^2Z^3\rho^3
+ h(4k^4W_0 + d^2rZ^3\rho^2 + 4dk^2Z(rW_0 + Z\rho^2))g[s] + d^2k^2(4k^2Z\rho(2k^2W_0
+ dZ(rW_0 + Z\rho^2)) + h(2k^4W_0 + 2d^2rZ^2(rW_0 + Z\rho^2)
+ dk^2Z(4rW_0 + 5Z\rho^2)))g[s]^2 + dk^4(4k^4W_0 + d^2hrZ^2\rho
+ 2dk^2Z(2rW_0 + \rho(h + 3Z\rho)))g[s]^3 + 4dk^8Z\rho g[s]^4 + k^{10}g[s]^5 \text{ and}
\]

\[
\Gamma_7 = 2d^3W_0Z^2\rho^2 + 4d^2W_0Z(k^2 + drZ)\rho g[s] + (k^2 + drZ)(2k^2W_0 + dZ(2rW_0
+ Z\rho^2))g[s]^2 + 2dk^2Z(k^2 + drZ)\rho g[s]^3 + (k^6 + dk^4rZ)g[s]^4.
\]

Since all terms in both \(\Gamma_6\) and \(\Gamma_7\) are positive, as are the other terms of \(\frac{\partial (\alpha/T)}{\partial Z}\), it is clear that \(\frac{\partial (\alpha/T)}{\partial Z} > 0\).

Opportunity cost \((W_0)\). Salary clearly rises with \(W_0\); \(\frac{\partial u}{\partial W_0} = 1\). However, total pay also rises with \(W_0\). However, note that we can rewrite the ratio of salary to total pay as:

\[
\frac{\alpha}{T} = \frac{W_0 + X_1 - X_2}{W_0 + X_1},
\]

where neither \(X_1\) nor \(X_2\) is a function of \(W_0\). The derivative of this expression with respect to \(W_0\) is simply \(\frac{\partial X_1}{W_0 + X_1}\), which is clearly positive. We therefore have unambiguously that the ratio of salary to total pay rises with an increase in the salesperson’s opportunity cost.
of time:
\[
\frac{\partial (\alpha / T)}{\partial W_0} > 0.
\]

Base sales (h). The derivative of salary with respect to base sales, \(h \), is:
\[
\frac{\partial \alpha}{\partial h} = -g[s](d \rho \sigma^2 + k^2 g[s])
\]
which is clearly negative. Meanwhile, recall that total pay does not change at all with \(h \). Hence, we have unambiguously that:
\[
\frac{\partial (\alpha / T)}{\partial h} < 0.
\]

Marginal productivity (k). The derivative of salary with respect to the marginal productivity of sales effort, \(k \), is:
\[
\frac{\partial \alpha}{\partial k} = \frac{-kg[s] \Gamma_8}{d(d \rho \sigma^2 + (k^2 + dr \sigma^2)g[s])^3},
\]
where
\[
\Gamma_8 = d^3 \rho^3 \sigma^6 + d^2 \rho \sigma^4(3k^2 \rho + dr(2h + \rho \sigma^2))g[s] + d \sigma^2(3k^4 \rho + 2dh(dr \sigma^2
+k^2) + 2d^2 \sigma^2(2k^2 - dr \sigma^2))g[s] + (k^6 + dk^2 \rho \sigma^2(3k^2 - 2dr \sigma^2))g[s]^3.
\]
Because \((k^2 - dr \sigma^2) > 0, \Gamma_8 > 0, \) and thus, \(\frac{\partial \alpha}{\partial k} < 0. \) We know that total pay rises as \(k \) increases; hence, the ratio of salary to total pay falls with \(k \):
\[
\frac{\partial (\alpha / T)}{\partial k} < 0.
\]

Cost of effort (d). Finally, salary changes with changes in the cost of effort, \(d \), as follows:
\[
\frac{\partial \alpha}{\partial d} = \frac{kg[s]^2 \Gamma_8}{2d^3(d \rho \sigma^2 + (k^2 + dr \sigma^2)g[s])^3},
\]
where \(\Gamma_8 \) is as defined above. Thus, salary is increasing in the cost of effort; because total pay is decreasing in the cost of effort, we have that
\[
\frac{\partial (\alpha / T)}{\partial d} > 0.
\]
Appendix B: Estimation details

Our analysis has two dependent variables, namely

(i) Salary to Total Pay Ratio (henceforth ‘v’)
(ii) And Total Pay (henceforth ‘T’)

Note that, by construction, v is bounded between zero and one (or more generally a and b) with point mass at both 0 and 1. In other words, there are a number of firms located at V = 0 and V = 1. (See Figures 1 and 2).

Generalized Method of Moments (GMM) estimation

The idea behind GMM estimation is to set up an objective function based on orthogonal moment conditions. The minimization of this objective function results in estimates of the parameters of interest. In other words, GMM estimates the parameter vector by minimizing a weighted sum of squares of the differences between the population moments and the sample moments. Therefore, in order to set up the procedure we need to specify (a) the moment conditions and (b) the weighting matrix. Details are provided in the following paragraphs.

Figure 1. 1996 ratio of salary to total pay—Histogram.
Moment conditions

We begin by defining the moment conditions based on the two dependent variables. Since the regression of T is a simple OLS problem we have can write $E(T | z_i, \varphi) = z'\varphi$. In the above, z is a vector of explanatory variables and φ are relevant parameters.

We also assume that v is distributed normally with mean $\mu_v = x'\gamma$ and variance τ^2. Again, x is a vector of explanatory variables while γ and τ are parameters. The density of v, however, is censored at a and b. In our case ($a = 0, b = 1$). These assumptions allow us to express the expectation of v as (see e.g. Greene, 1997)

$$E(v | x, \gamma) = a\Phi(\lambda_a) + b[1 - \Phi(\lambda_b)] + [\Phi(\lambda_b) - \Phi(\lambda_a)]x'\gamma + \tau \int^{\lambda_b}_{\lambda_a} \xi \phi(\xi) d\xi$$

(A1)

with

$$\lambda_j = \left(\frac{j - x'\gamma}{\tau} \right), \quad j = a, b$$

and $\{\Phi(\cdot), \phi(\cdot)\}$ are the standard normal CDF and PDF respectively. (See Datar et al., 1997 for a marketing application of the GMM approach to estimating the Double Limit Tobit based on equation (1) above).
We can use this information to write down moment conditions of the form

\[m_1(v, x, \gamma) = \frac{1}{n} \sum_{i=1}^{n} (v_i - E(v \mid x_i, \gamma)) \cdot \psi(x_i). \quad (A2) \]

The function \(\psi \) is any positive increasing function which facilitates identification by allowing the exogenous variables to act as instruments.\(^{13} \) A similar condition can be written down for total pay:

\[m_2(T, z, \phi) = \frac{1}{n} \sum_{i=1}^{n} (T_i - E(T \mid z_i, \phi)) \cdot \psi(z_i), \quad (A3) \]

with \(E(T \mid z_i, \phi) = z'\phi \). Now, let \(m = \{m_1, m_2\}, \theta = \{\gamma, \phi\}, y = \{v, T\}, w = \{x, z\} \) and let \(\Omega \) be some positive definite weighting matrix. Then:

\[\hat{\theta} \in \text{arg min} \Gamma(\theta) = [m(y, w, \theta)]' \Omega [m(y, w, \theta)]. \quad (A4) \]

This gives us a GMM approach to estimating the parameters in question. The method is efficient, consistent and robust (Hansen, 1982).

The optimal weighting matrix

The choice of the weighting matrix is critical to efficient estimation in GMM procedures. A simple (but efficient) choice is Hansen (1982):

\[\Omega = \sum_{i=1}^{n} [m(y, w, \theta)] [m(y, w, \theta)]' \quad (A5) \]

The two-step estimation proceeds as follows. First estimate

\[\hat{\theta}_1 \in \text{arg min} \Gamma_1(\theta) = [m(y, w, \theta)]' [m(y, w, \theta)]. \quad (A6) \]

Then compute

\[\hat{\Omega}_1 = \sum_{i=1}^{n} [m(y, w, \hat{\theta}_1)] [m(y, w, \hat{\theta}_1)]', \quad (A7) \]

which is then used to compute the second stem GMM estimates as

\[\hat{\theta}_2 \in \text{arg min} \Gamma_2(\theta) = [m(y, w, \theta)]' \hat{\Omega}_1 [m(y, w, \theta)]. \quad (A8) \]

\(^{13} \) For the purposes of this study we assumed that \(\psi(v) = v \) and that \(\tau = 1 \).
Rather than adopt the static (but optimal) weighting matrix approach advocated by Hansen (1982), we use an iterative GMM procedure (See Hansen, Heaton, and Yaron, 1996) which exhibits better small sample properties. In this approach the estimation does not stop at the second step but continues until some pre-specified convergence criteria (ζ) has been reached. In other words, start as in the two step approach but continue iterating until

$$\|\Gamma_t(\hat{\theta}_t) - \Gamma_{t-1}(\hat{\theta}_{t-1})\| \leq \zeta.$$

The optimal estimates are obtained as $\theta^* = \hat{\theta}_t$.

Incorporating heterogeneity

To incorporate heterogeneity we re-write the moment conditions as

$$\tilde{m}_1(v, x, \beta) = \frac{1}{n} \sum_{i=1}^{n} \left(\int \left[(v_i - E(v \mid x_i, \gamma)) \phi(\gamma \mid \bar{\gamma}, \tau_\gamma) \right] d\gamma \cdot \psi(x_i) \right) \quad (A9)$$

and

$$\tilde{m}_2(T, z, \phi) = \frac{1}{n} \sum_{i=1}^{n} \left(\int \left[(T_i - E(T \mid z_i, \phi)) \phi(\phi \mid \bar{\phi}, \tau_\phi) \right] d\phi \cdot \psi(z_i) \right) \quad (A10)$$

and make relevant replacements in the GMM objective function to obtain

$$\hat{\theta}_{SMM} \in \arg \min \Gamma(\theta) = [\tilde{m}(y, w, \theta)]' \tilde{\Omega}[\tilde{m}(y, w, \theta)]. \quad (A11)$$

In the above $\phi(.)|A, B$ is the normal density function with mean A and variance B. We use a Monte-Carlo approach to approximate the integrals. This implements a *Simulated (Generalised) Method of Moments (SMM)* estimator. (More details are available from the authors).

References (for Appendix B only)

References

