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In recent years there has been a growing stream of literature in marketing and economics that models con-
sumers as Bayesian learners. Such learning behavior is often embedded within a discrete choice framework

that is then calibrated on scanner panel data. At the same time, it is now accepted wisdom that disentangling
preference heterogeneity and state dependence is critical in any attempt to understand either construct. We posit
that this confounding between state dependence and heterogeneity often carries through to Bayesian learning
models. That is, the failure to adequately account for preference heterogeneity may result in over- or under-
estimation of the learning process because this heterogeneity is also reflected in the initial conditions. Using
a unique data set that contains stated preferences (survey) and actual purchase data (scanner panel) for the
same group of consumers, we attempt to untangle the effects of preference heterogeneity and state dependence,
where the latter arises from Bayesian learning. Our results are striking and suggest that measured brand beliefs
can predict choices quite well and, moreover, that in the absence of such measured preference information,
the Bayesian learning behavior for consumer packaged goods is vastly overstated. The inclusion of preference
information significantly reduces evidence for aggregate-level learning and substantially changes the nature of
individual-level learning. Using individual-level outcomes, we illustrate why the lack of preference information
leads to faulty inferences.
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1. Introduction
Consumers choose between brands based on their
individual preferences, past experiences, and the
brands’ marketing mix elements. The marketing and
economics literatures are replete with examples of
studies that investigate the relative impact each
of these factors has on the brand choice decision.
Although this literature is quite heterogeneous in its
findings, what has emerged as a consensus is that
the separate identification of these effects is nontriv-
ial. It is now well documented (see, e.g., Heckman
1991) that the effect individual preferences (hetero-
geneity) and past experiences (state dependence) have
on brand choices can be confounded. That is, we
know that a failure to adequately account for hetero-
geneity in preferences may lead to a bias in the effect
of state dependence. This in turn may also lead to
a bias in the estimates pertaining to marketing mix
effects such as price.

In recent years there has been a growing stream
of literature in marketing and economics that aims
to structurally model the beliefs that consumers have
about each brand and the role such beliefs play in

choice decisions. In particular, this literature treats
consumers as Bayesian learners and allows them
to update their beliefs via signals obtained at each
purchase occasion. For implementation purposes, the
Bayesian learning framework is embedded within a
discrete choice setting that is then calibrated on con-
sumer choice data (see, e.g., Erdem and Keane 1996,
Ackerberg 2003, Mehta et al. 2003). This approach
specifies a structural model of the brand choice pro-
cess and allows researchers to delve into the under-
pinnings of brand choice behavior.

Said differently, the Bayesian learning model can
be thought of as a framework that allows for higher-
order state dependence, albeit in a fairly parsimo-
nious manner. As such, the discrete choice model with
Bayesian learning is data intensive and makes dis-
entangling preference heterogeneity and state depen-
dence even more difficult. The key problem, simply
stated, is that consumer learning is not fully identified
from revealed choice data. This identification prob-
lem has been recognized (Erdem and Keane 1996),
and the typical solution is to assume a common prior
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across consumers or to somehow use past data to cal-
ibrate priors. The crux of the issue is that without
data on initial conditions, there is no way of iden-
tifying the rate and amount of learning for a given
consumer. Note that this problem persists even if data
were available from the first choice onward because
there remains an informational insufficiency, because
prior beliefs at the initial point are still unavailable
and remain heterogeneous across consumers. Ignor-
ing this missing information and the implicit het-
erogeneity induces biases in our understanding of
consumer learning and will almost surely misrepre-
sent other constructs of heterogeneity. We note that
the problem cannot simply be resolved with long pan-
els because such data are not informative about the
consumers’ initial priors.

What additional information, then, can researchers
collect that would help resolve these issues? The
answer is simply to augment revealed preference data
with information on consumer preferences. Ideally,
if a consumer’s true preferences for the relevant
brands were available at each purchase occasion, the
researcher could pin down the precise underlying
behavior that drives observed choices. Such prefer-
ence information, however, is tedious and expensive
to collect. A second-best alternative is to gather data
on preferences at some point prior to choices being
observed. Such information substantially reduces the
researcher’s burden about inferring initial priors by
substituting data in place of assumptions. As a result,
one is better able to resolve the confounding between
learning and preference heterogeneity by allowing
this augmented preference information to offer a com-
peting explanation for the observed choice sequence.

For instance, if a consumer’s preference data reveal
a strong idiosyncratic preference for a particular brand
of toothpaste (such as Crest) as well as a high degree
of familiarity with the brand, the researcher should be
able to rule out a learning-based explanation. Sensitiv-
ity to marketing mix variables is also better assessed
in the presence of such preference information. Con-
tinuing the earlier example, perhaps a price discount
on the last shopping trip seems to have induced the
consumer to switch from her preferred brand (Crest)
to a potentially less preferred one (Colgate). Clearly,
the availability of preference information now offers
insights into the degree of substitutability between the
two brands and would directly inform the degree to
which the consumer is price sensitive. If data reveal
that Colgate and Crest are equally preferred, it would
imply that she is less price sensitive than if the con-
sumer strongly preferred Crest to Colgate. Conse-
quently, the price differential required to induce a
brand switch from Crest to Colgate should be smaller
in the former case than in the latter, and this has direct
implications on the estimates of price elasticity. By a

similar argument, the effect of other marketing mix
elements would also be more cleanly estimated.

In general, there is widespread agreement that
stated preferences are based on the true underlying
preferences of the consumer. Conjoint studies rou-
tinely use multiattribute utility models to construct
estimates of consumers’ utility functions and use
them to predict choices. The previous literature has
also paid some attention to the importance of com-
bining revealed preference data with such stated pref-
erence data. Early studies such as Ben-Akiva and
Morikawa (1990), Hensher and Bradley (1993), and
Horsky and Nelson (1992) investigated the behav-
ioral and cognitive process through which stated pref-
erence data are generated, and they explained why
such data are predictive of actual market behavior.
Using cross-sectional health-care plan choice and sur-
vey data, Harris and Keane (1999) showed that incor-
poration of the attitudinal data leads to a substantial
improvement in choice model fit and more precise
estimates of all choice model parameters. Horsky
et al. (2006) reported similar findings in the context of
scanner panel data analysis. The above-cited studies
are primarily concerned with choice environments in
which decision makers act on full information. There
has been, however, a growing trend in recent years to
model choice processes in which decision makers act
with partial information. Manski (2004) recently dis-
cussed identification of such decision processes and
concluded that choice data alone do not suffice to
infer about the underlying behavior. In the spirit of
Manski (2004), we attempt to empirically show how
misleading inferences about the consumer’s learning
process can be, particularly when this process is cali-
brated using only scanner panel data.

In the current study we estimate a logit-based
Bayesian learning model in which learning param-
eters are allowed to be fully heterogeneous via the
augmentation of survey information on consumer
preferences and familiarities. By comparing it with
the Bayesian learning model calibrated on standard
scanner panel data alone, we make a number of
substantive contributions to the literature. Our find-
ings enhance the current knowledge about the con-
sumer brand choice process. First, we demonstrate
how the inclusion of preference and familiarity infor-
mation substantially alters our understanding of the
brand choice process. In particular, the absence of this
information significantly overestimates the amount of
aggregate-level learning. Correspondingly, the role of
preference heterogeneity is much more pronounced in
the presence of survey information. Second, our anal-
ysis allows us to take a deeper look at the individual-
level choice process and to consequently document
the effect that preference heterogeneity and learn-
ing have on explaining individual-level purchase pat-
terns. Finally, we find that the inclusion of preference



Shin, Misra, and Horsky: Disentangling Preferences and Learning in Brand Choice Models
Marketing Science 31(1), pp. 115–137, © 2012 INFORMS 117

information uncovers statistically and managerially
significant biases in parameter estimates, such as price
sensitivity, and the degree of parameter heterogeneity.
Although our results are an initial foray into the topic
and are based on a single data set and one particular
model specification, they do offer the marketing sci-
entist new insights into disentangling the impact of
preferences and learning in consumer’s brand choice.

The rest of this paper is organized as follows:
In the next section, we lay out the Bayesian learn-
ing process and illustrate how to embed it in a
discrete choice framework. In §3 we describe our
unique data set, which combines stated preferences
(survey) and actual purchase data (scanner panel)
for the same group of consumers in the toothpaste
market. We specify how the survey information on
preferences and familiarity of the brands is incorpo-
rated into the Bayesian learning model. In particular,
our specification of the learning process uses addi-
tional parameters that allow the consumer to update
fully heterogeneous initial preferences. At the same
time, we discuss the identification issues associated
with estimation of the Bayesian learning model using
scanner panel data. We then describe our estimation
methodology and follow this with a discussion of our
empirical findings. The parameter estimates of the
Bayesian learning model that relate to preference het-
erogeneity, learning, and marketing mix variables are
provided. We follow with discussing managerial and
research implications of our study. We conclude with
a summary.

2. The Bayesian Learning Model
The seminal work of Erdem and Keane (1996) has
generated a stream of papers in marketing and eco-
nomics that incorporate the Bayesian learning pro-
cess into a discrete choice framework.1 These models
have been used to model choices in various appli-
cation areas, from consumer’s brand choice deci-
sions (e.g., Erdem and Keane 1996, Ackerberg 2003,
Mehta et al. 2003) to physicians’ prescription deci-
sions (e.g., Crawford and Shum 2005, Narayanan and
Manchanda 2009). In keeping with this literature, we
will assume that beliefs are updated via a Bayesian
learning mechanism with normal priors and signals.
In addition, we will also assume that consumers are
risk neutral and myopic.

In the rest of this section, we lay out the model
specification and main assumptions underlying the
Bayesian learning model. Our exposition in the sequel
focuses mainly on the Bayesian learning model in the
context of its estimation using scanner panel data.

1 Earlier work in this vein includes Roberts and Urban (1988),
Eckstein et al. (1988), and Horsky and Raban (1988).

2.1. The Bayesian Quality Learning Process
In the framework described below, consumers learn
about brand quality by updating their beliefs over
successive purchase occasions. More specifically, con-
sumers receive a quality signal after each purchase,
combine the information contained in this signal with
their prior beliefs, and construct a posterior belief in
accordance with Bayes’s rule. In this context, “learn-
ing” is conceptualized as having two distinct effects:
bias reduction and uncertainty reduction. The first effect
stems from the stochastic convergence of a con-
sumer’s quality perception to the true mean qual-
ity (bias reduction), whereas the second effect reflects
the deterministic convergence of uncertainty to zero
(uncertainty reduction). This two-dimensional nature
of the Bayesian learning process yields a parsimo-
nious yet flexible learning mechanism.

Let QS
ij1 t denote a signal about brand j’s quality that

consumer i receives after purchasing brand j at time t.
We assume that quality signals are generated from the
following normal distribution:2

QS
ij1 t ∼ N4Qij1�

2
Qij
51 (1)

where Qij is consumer i’s true mean quality assess-
ment (or match value) of brand j , and �2

Qij
is the sig-

nal variance of brand j faced by consumer i. Given
that �2

Qij
> 0, quality signals only contain partial infor-

mation about the unknown true mean quality. Again,
the quality signal is assumed to be realized only after
consumer i purchases and consumes brand j at time t.

Consumer i is assumed to have an initial qual-
ity belief about the unknown true mean quality of
brand j , as given below:

Q̃ij10 = N4�Qij10
1�2

Qij10
50 (2)

In the above equation, �Qij10
and �2

Qij10
are initial beliefs

about the mean and variance of brand j’s quality at
time 0, respectively. We note here that in the Bayesian
paradigm, prior beliefs at any time t are simply the
posterior beliefs at time t− 10 In other words, succes-
sively combining prior beliefs with the consumption
signals allows us to construct the posterior belief at
any time t > 00 This time-specific posterior belief also
follows a normal distribution and is denoted by

Q̃ij1 t = N4�Qij1 t
1�2

Qij1 t
50 (3)

Because quality beliefs at any time t ≥ 0 are nor-
mally distributed, they are completely characterized
by their mean and variance parameters. In other

2 We are assuming that non-purchases are uninformative from a
quality learning point of view. An alternative specification could
include a reinforcement learning component wherein non-purchases
also have a role to play, in the spirit of Camerer et al. (2002).
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words, the laws of motion for the posterior mean and
variance are sufficient to characterize the evolution of
a consumer’s quality beliefs. If consumer i updates
posterior beliefs at time t−1 (or prior belief at time t)
through the realization of quality signals in a Bayesian
fashion, the posterior mean and variance at time t can
be updated in the following recursive manner:

�Qij1 t
=

�2
Qij1 t

�2
Qij1 t−1

�Qij1 t−1
+ yij1 t

�2
Qij1 t

�2
Qij

QS
ij1 t and (4)

1
�2
Qij1 t

=
1

�2
Qij1 t−1

+ yij1 t
1

�2
Qij

1 (5)

where yij1 t is an indicator variable such that yij1 t = 1
if consumer i purchases brand j at time t and yij1 t = 0
otherwise. Successive substitutions of Equations (4)
and (5) result in alternative expressions for �Qij1 t

and
�2
Qij1 t

as given by

�Qij1 t
=

�2
Qij1 t

�2
Qij10

�Qij10
+

�2
Qij1 t

�2
Qij

t
∑

�=1

yij1 �Q
S
ij1 �

and (6)

1
�2
Qij1 t

=
1

�2
Qij10

+

∑t
�=1 yij1 �

�2
Qij

0 (7)

From an estimation standpoint, it is useful to con-
struct an alternative expression of the Bayesian learn-
ing process using a change of variables. To do this
we define two new variables, �Qij1 t

= �Qij1 t
− Qij and

�S
ij1 t

=QS
ij1 t

−Qij . These new variables, �Qij1 t
and �S

ij1 t
, are

referred to as perception bias and signal noise, respec-
tively. The former measures how much consumer i’s
mean quality perception deviates from the true mean
quality, whereas the latter represents a noise compo-
nent of the quality signal. Using these transformations
and combining Equation (7) with (6) lead to the final
expression for the mean quality perception, given by

�Qij1 t
= Qij + �Qij1 t

= Qij +
4�2

Qij
/�2

Qij10
5�Qij10

+
∑t

�=1 yij1 ��
S
ij1 �

�2
Qij
/�2

Qij10
+
∑t

�=1 yij1 �
0 (8)

The mean quality perception starts with Qij + �Qij10

at the initial period (t = 0), evolves over time as
suggested in Equation (8) (for t ≥ 1), and converges
to Qij at steady state (t = t∗, where �Qij1 t∗

= 0 and
�2
Qij
/�2

Qij1 t∗
= �). The above equation represents the

crux of the Bayesian learning process. It highlights
the fact that the mean quality perception �Qij1 t

can be
decomposed into two components: a time-invariant
Qij and a time-varying �Qij1 t

. The existence of the time-
varying component differentiates the Bayesian learn-
ing process from the zero-order process. If �Qij10

= 0
and �2

Qij10
= 0 (therefore, �Qij1 t

= 0 ∀ t), the Bayesian

learning process collapses to the zero-order process
(i.e., �Qij1 t

=Qij ). This case describes a consumer who
is no longer learning (about brands) because his or
her quality perception already converged to the true
mean quality, and no uncertainty about his or her
quality perception remains.

The unique specification of the time-varying com-
ponent also differentiates the Bayesian learning pro-
cess from the alternative approaches of modeling
time-varying preferences such as the popular iner-
tia/purchase reinforcement process (i.e., �Qij1 t

= Qij +

�iyij1 t−1). There are two noticeable differences between
the inertia and Bayesian learning processes. First, the
extent of state dependence is different. The inertia
process has only a first-order effect (i.e., only the
brand choice lagged by one time period affects the
current brand choice decision), whereas the Bayesian
learning process is a higher-than-first-order process
(which is often referred to as an infinite-order process,
in which the entire choice history affects the current
brand choice decision). More importantly, the nature
of state dependence is different. The effect of inertia
is usually modeled as not varying across brands or
over time, whereas that of learning is heterogeneous
across brands and is diminishing over time.

2.2. Utility Specification
Given the specification of a consumer learning pro-
cess, we now move to describing the consumers’ util-
ity and choice framework. As is typical in discrete
choice models, we specify consumer i’s utility from
purchasing brand j at time t as the following linear
form:

Uij1 t = Q̃ij1 t−1 +Xij1 t�i + �U
ij1 t1 (9)

where Q̃ij1 t−1 is consumer i’s beliefs about brand j ′s
quality at time t, Xij1 t stands for the vector of market-
ing mix variables of brand j observed by consumer i
at time t, �i is the corresponding vector of response
coefficients, and �U

ij1 t stands for utility components
unobserved to researchers. Note that when consumer
i makes a purchase decision at time t, the brand qual-
ity signal is not yet realized and hence is not consid-
ered an observable. In other words, quality beliefs in
our notation are lagged by one time period to repre-
sent the fact that the quality beliefs updated after pur-
chase occasion at time t − 1 are relevant to purchase
decision at time t. Since Q̃ij1 t−1 is a random variable,
consumer i bases decisions on the expected value of
utility with respect to quality beliefs. This expected
utility can be computed as

U E
ij1 t = E6Uij1 t7

= E6Q̃ij1 t−17+Xij1 t�i + �U
ij1 t

= �Qij1 t−1
+Xij1 t�i + �U

ij1 t0 (10)
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Using the alternative parametrization introduced ear-
lier in Equation (8), we can also express the above
equation as

U E
ij1 t =Qij + �Qij1 t−1

+Xij1 t�i + �U
ij1 t0 (11)

The assumption that �U
ij1 t is independent and iden-

tically distributed (iid) Type I extreme value dis-
tributed completes the model specification and leads
to the random coefficient multinomial logit model
where brand-specific intercepts are composed of true
mean qualities (Qij ) and perception biases (�Qij1 t−1

).
Notice that the model specification presented here
is simpler than are other variants of the Bayesian
learning model available in the literature. There are
several ways to extend the current specification if
the researcher so desires. First, the assumption that
�U
ij1 t is multivariate normal distributed leads to the

random coefficient multinomial probit model with a
full covariance matrix (Narayanan and Manchanda
2009). Second, risk aversion can be incorporated via
the Constant Absolute Risk Aversion subutility func-
tion (Erdem and Keane 1996, Crawford and Shum
2005, Narayanan and Manchanda 2009). Third, for-
getting can be embedded in the learning model by
allowing for the possibility of imperfect recall (Mehta
et al. 2004). Finally, forward looking can be mod-
eled together with learning (Erdem and Keane 1996,
Ackerberg 2003, Crawford and Shum 2005). In this
study, we keep the model specification as simple
as possible to focus on our main research ques-
tions by avoiding methodological and interpretational
complications.3

2.3. Identification Issues
In what follows, we informally discuss the identifi-
cation of the parameters in Bayesian learning mod-
els. Identification of the model parameters depends
on the specification of the model as well as the data
available. The Bayesian learning model presented

3 The inclusion of forward-looking behavior substantially increases
the computational burden because it requires solving a dynamic
programming problem in the course of estimation. As a con-
sequence, forward-looking behavior is often introduced at the
expense of heterogeneity in the Bayesian learning model. Further-
more, the incorporation of forward-looking behavior is usually
undertaken to allow for experimentation, which in the context of
a mature product category with experienced buyers seems less
important. We also ignore risk aversion in our application. Given
that the focus of this study is to discuss the role of survey informa-
tion augmented to scanner panel data in improving identification
of the Bayesian learning model, we conjecture that the findings
reported in this study would be robust to the change of model
specification. Finally, our results are based on a multinomial logit
(MNL) specification. A more general framework, such as the multi-
nomial probit, will be able to capture correlations across brands at
each purchase occasion and, consequently, might offer richer and
cleaner insights into learning.

in the earlier section is not identifiable in its cur-
rent form. Some parameters are by design unidentifi-
able, whereas others are challenging to identify with
typical scanner panel data. One therefore needs to
impose a number of additional restrictions to achieve
identification.

The set of parameters that characterize the Bayesian
learning process is 8Qij1�

2
Qij
1 �Qij10

1�2
Qij10

9 ∀ i and j .
From Equations (7) and (8) it is obvious that the
initial perception variance �2

Qij10
and the quality sig-

nal variance �2
Qij

are not separately identified, but
only their ratio, �2

Qij
/�2

Qij10
1 is identifiable. To resolve

this, one usually sets �2
Qij

= 1 ∀ i and j . The literature
adopts various rules in dealing with these identifica-
tion issues. Whereas Mehta et al. (2003) impose the
same restriction to identify this ratio, Narayanan and
Manchanda (2009) use a different strategy in the sense
that (i) their initial perception variance is only brand
specific (i.e., �2

Qj10
) and is drawn from a common prior

distribution, and (ii) the quality signal variance is
only individual specific (i.e., �2

Qi
) and is estimated

from data.
Under our specification, the interpretation of esti-

mated �2
Qij10

is deemed relative to �2
Qij

= 1 (e.g., �̂2
Qij10

=

1/2 implies that �2
Qij10

is one-half of �2
Qij

). The true
mean qualities, Qij , can be thought of as steady-state
individual-level intercept terms. As is typical, not all
of these brand-specific Qijs are identified, and we
need to specify a reference brand (e.g., say, QiJ = 05.

A remaining question is how one identifies �Qij10

and �2
Qij10

4separately from Qij5. These prior quantities
represent heterogeneous initial conditions that cannot
simply be identified from revealed choice data with-
out strong untestable assumptions. The identification
problems arise because typical standard scanner panel
data are usually left-truncated (initial conditions)
and/or are often relatively short. In addition, typi-
cal patterns of choices in frequently purchased prod-
uct categories make this identification task harder to
conduct. First, the market share of brands covaries
with changes in brands’ marketing mix investments
that could mask the systematic evolution of the mar-
ket share, which is essential to separating the prior
bias and uncertainty constructs from the steady-state
intercepts. This problem is exacerbated because of
the maturity of typical product categories for which
scanner panel data are available.4 Second, consumers
often purchase a brand from a small subset of the
brands available in the product category. That is,
yij1 t = 0 for some j during the entire purchase history

4 This problem is mitigated by relying on specific product cate-
gories, such as diapers, food, cat or dog food, where new customers
exhibit learning or by choosing product categories with new brand
introductions.
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of consumer i. This implies that consumer i’s qual-
ity beliefs about the unchosen brands do not evolve
over time; consequently, for such a consumer, we can-
not cleanly distinguish the prior means and variances
from the steady-state qualities for these brands. Given
these limitations of scanner panel data, researchers
have no choice but to impose some homogeneity
restrictions on �Qij10

and �2
Qij10

to achieve identifica-
tion. Typically, researchers make assumptions such as
setting �Qij10

= v̄j and �2
Qij10

= �̄2
Q0
0 Furthermore, one

assumes that the panel data are sufficiently long so as
to allow one to identify Qij from the individual-level
choice share near the end of the sample and �̄j from
the difference of choice share between the early and
late periods of the sample. Finally, one argues for the
identification �̄2

Q0
by relying on the evolution patterns

of choice shares over the sample period.
These identification problems are well recognized,

and various authors have attempted to mitigate them
by making innovative use of available data coupled
with adjustments to model structure. Our identifica-
tion strategy, which is detailed in the next section,
is to use individual-level survey data to calibrate
the prior constructs, which then will help identify
both cross-sectional heterogeneity and the scope and
nature of individual learning.

3. Data
In this section we describe the data used in our appli-
cation. The data consist of typical scanner panel data
augmented by a matched survey of the panelists’
preferences toward the brands. After presenting the
data, we discuss how the survey information is inte-
grated into the model and, along with other assump-
tions, how it helps identify key constructs pertaining
to the Bayesian learning process.

3.1. Data Description
The empirical analysis in this study uses a unique
data set on toothpaste choices and preferences
obtained from IRI. The scanner panel data con-
tain individual-level choice data over time, along
with price and promotion information for the brands
within the toothpaste category. Two marketing mix
variables, price and in-store display, are available in this
data set. Price is measured as the shelf price, inclu-
sive of any temporary price discount. In-store display
is measured as a scale index ranging from zero to one,
which represents the intensity of display activity for
a particular brand and time in the relevant store.

A unique feature of the data is that survey infor-
mation pertaining to liking (i.e., how much each
respondent likes each brand) and familiarity (i.e., how
familiar each respondent is with each brand) is avail-
able in addition to the standard scanner panel data.

Both liking and familiarity are rated on a scale from
1 (low) to 7 (high). This stated preference information
is pertinent to our identification of individual learn-
ing because it was collected from the same individu-
als we have scanner data on and just before the start
of the observation period. It is this additional sur-
vey information that will allows us to tease out cross-
sectional variation and better initialize time-varying
components in the learning process.

The data set comprises a random sample of 673
households dispersed across the United States. Brand
choices among seven national brands in the tooth-
paste category—Aim, Arm & Hammer, Aquafresh,
Colgate, Crest, Mentadent, and Pepsodent—were
tracked for one year. These seven brands totaled 86%
of U.S. category sales at the time. From 673 house-
holds, we use only those who made at least four pur-
chases over the study period. This yields a sample of
354 households, making a total of 2,501 purchases in
the category.

Table 1 presents basic descriptive statistics related
to both survey and scanner data. The two large
market share brands, Colgate and Crest, are not
the highest-priced brands but, on average, rated
high in both liking and familiarity. When compared
with Colgate, Crest is priced lower, and displayed
less frequently, but rated higher in both liking and
familiarity. Furthermore, these two market leaders
are repeatedly purchased more often than other
brands except Mentadent. The two small market
share brands, Aim and Pepsodent, are among the
lowest-priced brands and, on average, rated low
in both liking and familiarity. The medium market
share brands—Aquafresh, Mentadent, and Arm &
Hammer—generally rank in the middle in terms of
price, display, and survey ratings. There are a cou-
ple of noticeable exceptions. Arm & Hammer is the
least frequently displayed brand, whereas Mentadent
is the highest-priced brand and among the most
repeatedly purchased brands. Table 1 also presents
demographic information of the sample pertaining to
family size and household income. The average fam-
ily size is about three, and the average household
income belongs to the bracket between $45,000 and
$55,000. These numbers closely match with figures
from the 2000 U.S. Census.5

3.2. The Information Content of Survey Data
To begin with, we seek to address the issue of whether
liking and familiarity are indeed separate constructs.
Figure 1 provides jittered scatterplots of the two
constructs for each brand along with their marginal
histograms. The correlation between the liking and

5 According to the 2000 U.S. Census, the average family size is 3.14,
and the average household income is $51,855.
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Table 1 Descriptive Statistics for Toothpaste Data

Brand

Variable Arm & Hammer Aim Aquafresh Colgate Crest Mentadent Pepsodent

Market share 000704 000260 001523 003179 003123 001052 000160
Repeat purchase probability 004650 003750 005138 005725 005759 005764 002813
Price

Mean 207653 104250 203676 205343 204377 305522 103265
Std. dev. 004860 004859 004561 003915 004309 005319 002332

Display
Mean 000440 000674 001141 002751 001083 000980 000428
Std. dev. 001483 001747 001470 002568 001435 001984 001385

Liking
Mean 304492 303164 402006 504463 509802 402486 208757
Std. dev. 109611 108194 109778 107744 105507 201437 106903

Familiarity
Mean 404011 403446 503418 601045 602994 500339 309689
Std. dev. 107773 107540 106488 103706 103635 109305 108381

Demographics Family size Income

Mean 3.0198 8.0672
Std. dev. 1.2872 2.3568

Notes. Family size is the number of individuals in the household. Income is measured using categories (1 = less
than $10K, 2 = $10–$12K, 3 = $12–$15K, 4 = $15–$25K, 5 = $25–$35K, 6 = $25–$35K, 7 = $35–$45K,
8 = $45–$55K, 9 = $55–$65K, 10 = $65–$75K, 11 = $75–$100K, 12 = greater than $100K).

familiarity ratings hover around the 45%–50% range,
and the proportion of consumers providing identical
ratings for familiarity and liking range from 25% (Pep-
sodent) to 61% (Crest). The spread in the data reveals
that consumers are clearly heterogeneous across the
measures and also that the covariance between the
two is not perfect. Finally, in the reduced-form models
of brand choice we discuss next, the effects of the two
constructs were separately identified and significant.
These tests lead us to conclude that the two measures
are indeed separate.

The incorporation of survey data into the model
is valuable to the extent it helps explain individ-
ual choices. We investigate this further by running
a number of reduced-form models that use only
the survey data to explain brand choices.6 First, we
run a simple multinomial logit that seeks to model
choices as a function of the survey data measures. The
estimated within-sample hit rate was approximately
53.5%, suggesting that cross-sectional heterogeneity
across consumers can explain a large proportion of
brand choices even without the inclusion of temporal
covariates or learning. This model uses both the famil-
iarity and liking scores to predict choices. Excluding
the familiarity construct lowered the hit rate to 51%,
whereas excluding liking reduces the hit rate to 38%.

6 For brevity we have not included the actual results from all
reduced-form models we ran but are providing a short qualitative
description of the results obtained. Detailed results are available
from the authors upon request.

Our informal examination of the survey data
underlines its potential role in identifying key effects
in choice models and, in particular, structural models
incorporating state dependence and learning. In what
follows we now examine patterns in the data that
might (or might not) support the presence of learning.

3.3. Where Is the Learning? Model-Free
(Lack of) Evidence

Before we embark on a fully structural approach to
the problem, we undertake an extensive model-free
investigation of the presence of learning in our data
set. Given the availability of survey data, we should
be able to discern whether consumers are learning
without recourse to a full model. To do so we focus
our attention on three empirical indicators of learning.

3.3.1. Temporal Effects of Survey Data. Learn-
ing, on the part of the consumers, implies that pref-
erences for the brands are temporally varying, and
such variation can be tested for. In particular, if con-
sumers are actively learning, choices documented in
“early” observations should be significantly affected
by liking and familiarity measures, whereas “later”
observations should not.7 To investigate this we ran
separate simple MNL choice models (with and with-
out unobserved heterogeneity) based on two distinct
samples created for early and late observations. To
ensure robustness we defined early (and late) in var-
ious ways, including first and last observations for

7 We thank an anonymous reviewer for suggesting this test and
other model-free tests.
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Figure 1 Scatterplots of Liking and Familiarity with Marginal Histograms
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each household, and extended this to first and last
“few” observations (two to three observations). In
both cases, we found that liking and familiarity are
significant predictors of choice. Furthermore, the dif-
ferences in the effect of these measures were not dif-
ferent from zero in a statistically significant way. This
leads us to conclude that preferences are stable and
that aggregate patterns in the data do not support a
learning hypothesis.

3.3.2. Aggregate Patterns in Market Share. Shifts
in market share and changes in variability of mar-
ket share are often cited as evidence of learning. We
ran a number of tests to ascertain whether there were
shifts in market share over the sample period condi-
tional on the familiarity levels of the brands. In par-
ticular, we examined the movement in market share
among those households that indicated low familiar-
ity with brands. If there was indeed learning at play,
we should see market shares of these brands chang-
ing over time. Although we found no evidence of
shifts in market share of the major brands (Crest, Col-
gate, and Aquafresh), we did find some evidence that
market shares were moving over the sample period
for niche brands (Arm & Hammer and Mentadent).
We note that these shifts could also be explained by
movements in prices or promotions. These alternative
explanations will be examined when we implement
the full model in what follows.

3.3.3. Higher-Order State Dependence. Learning
can be thought of as higher (than first)-order state
dependence. Clearly, an infinite-order state depen-
dence model cannot be empirically distinguished
from learning. To test whether the data exhibit such
higher-order patterns, we ran simple choice models
with increasing lagged choice indicators. We found
that lagged indicators up to the fourth order were sig-
nificant predictors of current choice. This leads us to
conclude that a model with a Bayesian learning com-
ponent would obtain traction (if higher-order state
dependence were ignored, as it usually is in the lit-
erature). To check whether this was indeed learning,
we included our survey measures into the model with
higher-order state dependence. We find that most
lagged choice indicators (except of the first order) are
insignificant in the presence of the survey data. This
again leads us to suspect that any learning in these
data may be spurious.

Overall, the results from our model-free analyses
suggest that the survey data have significant rele-
vance as a measure of cross-sectional heterogeneity,
as a proxy for consumers’ beliefs, and in the data’s
ability to disentangle learning from preferences. In the
next section, we discuss our empirical implementa-
tion and provide details about how the survey data
are used to calibrate the levels and uncertainty in con-
sumers’ prior beliefs.

4. Empirical Implementation
To estimate the parameters of our model, we con-
struct a Markov chain Monte Carlo (MCMC) scheme
that provides us draws from the stationary joint pos-
terior density of the parameters. In what follows we
describe the procedure in brief and relegate details to
the appendix.

4.1. Basic Specification
Recall that our basic specification relies on consumers
maximizing expected utility of the form

U E
ij1 t =Qij + �Qij1 t−1

+Xij1 t�i + �U
ij1 t1 (12)

with the perception bias at time t being denoted by

�Qij1 t−1
=

[ �2
Qij

�2
Qij10

+

t−1
∑

�=1

yij1 �

]−1[ �2
Qij

�2
Qij10

�Qij10
+

t−1
∑

�=1

yij1 ��
S
ij1 �

]

0

(13)
In our specification, the vector Xij1 t consists of

prices and display levels for each brand. Finally, as
mentioned before, the �U

ij1 t are assumed to be dis-
tributed iid extreme value Type I.

4.2. Identification Using Survey Information
As we mentioned earlier, the identification of learning
models is a nontrivial matter. In the traditional, homo-
geneous learning model, identification restrictions are
imposed to achieve identification (see, e.g., Erdem
and Keane 1996). More recently, Narayanan and Man-
chanda (2009) exploit the variation in the patterns of
evolution in prescriptions across multiple drugs to
identify heterogeneous learning. In both cases, para-
metric identification assumptions are required on the
agent’s prior beliefs to say something about identifica-
tion. In this paper, we have access to survey data that
allows us to inform the model about heterogeneity in
prior beliefs without resorting to a purely distribu-
tional assumption.

The survey component in our data provides addi-
tional information such as liking and familiarity for
each brand. Define Sij = 8LIKij1FAMij9, where Sij is
consumer i’s survey data for brand j , LIKij is con-
sumer i’s 1-to-7-point liking measure for brand j , and
FAMij is consumer i’s 1-to-7-point familiarity measure
for brand j .8 In both constructs, 1 implies less and

8 The results in the sequel are based on using the survey data as is.
We also experimented with alternative standardizations of the data
and found similar results. The key identification in our framework
stems from the variation in the survey responses across individual
households, and therefore our results are fairly robust to the way
this information is used. Also note that because the impact that
liking has on quality is heterogeneous, any scaling distortions will
be subsumed into the relevant parameter. Again, this results in
our basic findings being robust to the manner in which the survey
data are coded.
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7 implies more. For example, a 7 on familiarity would
imply that the consumer is very familiar with that par-
ticular brand.

Because this survey information is collected prior
to the choices being observed, liking and familiarity
are likely to contain relevant information about the
mean and variance of quality perception at the initial
period. We exploit this analogy by making the con-
sumers’ prior constructs a function of the survey data
as follows:

�Qij10
= �̄j +�i

(

LIKij −
1
N

N
∑

i=1

LIKij

)

and (14)

1
�2
Qij10

= exp4�̄+ �iFAMij51 (15)

where the bar notation over the parameters indicates
that they are common across consumers. The liking
and familiarity measures pin down a given consumer’s
quality beliefs and uncertainty at the time the sur-
vey was conducted. Because our data pertain only
to choices made after the survey data are collected,
we are in essence “initializing” our prior constructs
at this point. The variation in liking allows us to
identify heterogeneity in the perception bias, whereas
familiarity helps identify variation across consumers
in prior uncertainty. Together, they allow us to iden-
tify a model that allows for heterogeneous priors and,
consequently, heterogeneous learning.

When survey information is not available (or is
ignored, as in some models we estimate) we set
�i = 0 and �i = 0. Consequently, �Qij10

= �̄j and
1/�2

Qij10
= exp4�̄5. In this case, the initial perception bias

is pooled across consumers, and the initial perception
variance is pooled across both consumers and brands.
These are standard identification restrictions that are
needed in the context of Bayesian learning models
applied to scanner panel data (see, e.g., Erdem and
Keane 1996, Mehta et al. 2003).9 Note that, in general,
homogeneity restrictions on �Qij10

and �2
Qij10

do not nec-
essarily imply homogeneous learning. As is evident
from Equation (8), the mean quality perceptions are
still heterogeneous on account of heterogeneous (yet
time-invariant) true mean qualities and the observed
sequence of individual-level brand choices. The initial
market shares of the toothpaste brands help identify
the initial perception bias pooled across consumers. On
the other hand, the initial perception variance pooled
across both consumers and brands is identified from
the evolution patterns of consumer choice behavior for
all brands in the market and its relationship with qual-
ity signals from consumption experience. Finally, not

9 Mehta et al. (2003) use an initialization sample to minimize the
negative impact of these homogeneity assumptions.

all brand-specific �̄js are identified, and therefore one
of them needs to be locationally fixed (say, �̄K = 0).10

This is the last condition to render the parameters in
our Bayesian learning model identified.

4.3. MCMC Estimation Scheme
Complete details of the MCMC procedure are in the
appendix. The basic algorithm is similar to those
used in the literature and involves iteratively sam-
pling parameter blocks from their conditional poste-
rior densities.11 We ran 25,000 iterations after 25,000
burn-in iterations, and we thinned the chain by retain-
ing every fifth draw to reduce autocorrelation, leav-
ing us with 5,000 draws that were then used for
inference. Figure 2 presents trace plots for the learn-
ing parameters with and without survey data. Visual
inspection suggests that the above burn-in period is
adequate and that the chains converge. Other param-
eters exhibit similar patters and are omitted for the
sake of brevity.

5. Results and Empirical Findings
In this section we report our results and discuss
empirical findings. These include estimates from
the Bayesian learning model with and without the
individual-level survey information on familiarity
and preferences of the brands. We focus on four
areas of interest that pertain to our earlier discussion:
(i) model fit, (ii) parameter estimates, (iii) magnitude
of learning, and (iv) individual-level insights.

5.1. Model Fit
Table 2 provides the fit statistics for the Bayesian
learning model and other competing models. The
model fit statistics presented are log-marginal likeli-
hoods computed using the harmonic mean approach
of Newton and Raftery (1994), and in all cases the sig-
nificance of the fit improvement is interpreted based
on the criteria proposed by Kass and Raftery (1995).

The results presented in Table 2 show that either
with or without the survey data, the Bayesian learn-
ing model provides a better fit than do any of its com-
peting models (in which state dependence is either
not allowed or specified with a different functional
form). The differences between the Bayesian learn-
ing model log-marginal density and its best-fitting

10 This K need not be the same as the J that sets QiJ = 0. Also note
that in cases where households only buy a single brand in the sam-
ple, identification of learning is partially parameteric and relies on
the survey data (for initial conditions) and on Bayesian shrinkage
for the true mean qualities of other brands.
11 We checked the performance of our estimation procedure with
simulated data. The simulation results show that the proposed
MCMC sampler converges after several thousand iterations and all
parameter estimates recover the true values within sampling error.
Full details of the simulation results are available from the authors
upon request.
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Figure 2 MCMC Trace Plots for Learning Parameters
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competing model can be classified as “very strong.”12

Taken at face value, these results make a strong case
for the inclusion of the Bayesian learning process in
traditional brand choice models. However, we note
that the better fit stems directly from the additional

12 Kass and Raftery (1995) suggest that 2ln(BayesFactor) be larger
than 10 for the evidence to be very strong in favor of the numerator
model. The ln(BayesFactor) in the above is the difference of the log-
marginal densities.

flexibility afforded by the learning framework. In par-
ticular, learning-based models permit the incorpora-
tion of higher-order feedback effects into the model
that mechanically increase performance. The extent to
which learning is relevant in our application will be
discussed in the sections that follow.

Table 2 also showcases the importance of includ-
ing survey data. Incorporating survey information
always improves fit, irrespective of the model being
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Table 2 Log-Marginal Densities of the Estimated Models

Data

Model Standard scanner data Survey augmented data

Model 1 −21086 −11863
Model 2 −21066 −11850
Model 3 −11983 −11820

Notes. Model 1: Random coefficient logit without state dependence. Model 2:
Random coefficient logit with a loyalty variable (last purchase dummy).
Model 3: Random coefficient logit with the Bayesian learning process.

considered. In particular, the fit of the Bayesian learn-
ing model improves from −11983 to −11820 when the
survey information is incorporated. This fit improve-
ment offers very strong evidence in favor of incor-
porating the survey data. Equally striking is the fact

Table 3 Parameter Estimates of the Bayesian Learning Model

Standard scanner data Survey augmented data
(Choice + Marketing mix) (Choice + Marketing mix + Survey)

Parameter Posterior mean Heterogeneitya Posterior mean Heterogeneitya

True mean quality
Arm & Hammer 10.0911 0.4879 7.8784 0.3618

4909696110021335 400368510062545 470636118011905 400267110044235
Aim 2.7086 0.6405 1.5366 0.4610

420555412086635 400478610076615 410407311065785 400272210062665
Aquafresh 7.8559 0.7972 7.2396 0.5932

470613318012535 400520310097525 470026917041445 400363410080725
Colgate 9.3644 0.6492 8.2139 0.4282

490225619055455 400378910092615 470986318035935 400256010062345
Crest 8.8023 0.7165 8.3815 0.6038

480658718092735 400548411003925 480181718063285 400379410080745
Mentadent 11.9406 0.7473 10.8523 0.5628

41106708112024405 400475010099305 41005217111014885 400441110068735
Marketing mix response

Price −307248 1.2648 −304176 0.8011
(−3089681−305461) 410078411050955 (−3058941−302697) 400686210091055

Display 0.5192 0.7647 0.6473 0.5866
400371710068215 400598010092045 400454910085745 400403010077865

Initial perception bias
Arm & Hammer −406458 −205733

(−4098041−402964) (−2088971−201705)
Aim −209873 −108339

(−3031471−205927) (−2024441−103390)
Aquafresh −205048 −109612

(−2077241−202344) (−2029651−105967)
Colgate −201824 −007872

(−2044371−109147) (−1009721−003695)
Crest −107016 −101369

(−2000891−104440) (−1055991−006935)
Mentadent −309145 −301706

(−4027941−304891) (−3064241−205867)

Liking− Liking 0.7300 0.3433
(0.6977, 0.7615) (0.3215, 0.3656)

Log(Initial precision)b

Intercept 0.0221 −008785
(−00240110023025 (−1053131−002006)

Familiarity 0.3832 0.2356
400358710040425 400220310025185

Note. Numbers in parentheses indicate a 90% credible set.
aUnobserved heterogeneity is measured by the posterior mean of the square root of the diagonal element of V�̄ (Rossi et al. 1996).
bPrecision= 1/Variance of quality perception.

that the fit of the survey augmented random coeffi-
cient logit model without state dependence (i.e., zero-
order behavior), in which the individual-level prefer-
ence measures serve only to “shift” the brand-specific
constants, has a better fit than does the Bayesian learn-
ing model, which allows a high-order effect of state
dependence but does not include the survey informa-
tion (−11863 versus −11983). This implies that stated
preferences play a larger and more significant role in
explaining choices than does the flexibility afforded by
learning models.

5.2. Parameter Estimates
Table 3 provides the parameter estimates of the
Bayesian learning model (with and without sur-
vey data).
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5.2.1. Brand-Specific Constants and Qualities.
The inclusion of the stated preference information
has a twofold impact on the brand-specific constants,
which are interpreted as the true mean qualities in
the context of the Bayesian learning model. Pairwise
comparisons of these constants (in Table 3) reveal that
both the mean values and variances are smaller when
stated preferences are included. The reduction in the
means and in particular in the heterogeneity of the
brand-specific constants indicate that stated prefer-
ences provide valuable information on the variation
in the true mean qualities.

Figure 3 Individual-Specific Posterior Means of Initial Mean Quality Perception
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In Figure 3 we plot the estimated individual-
specific posterior means of the quality perceptions
evaluated at the initial period. This quantity reflects
the beliefs of the consumers at the beginning of the
sample. The estimated initial mean quality percep-
tions with survey information are significantly more
dispersed for every brand, whereas there is no dis-
cernible systematic pattern to the differences when
it comes to the location of the density. This sug-
gests that a large proportion of the individual-level
variation across consumers is not captured by the
brand-specific constants without the aid of the stated
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preference information. In the absence of the survey
information, some of that variation is carried over to
other constructs in the model, such as the heterogene-
ity in marketing mix effects. We discuss this next.

5.2.2. Sensitivity to Marketing Mix Variables.
The mean effect and heterogeneity in the sensitivity
of marketing mix variables, reported in Table 3, are
different when the stated preference information is
accounted for. Without survey information consumers
are (on average) thought to be more price sensitive
and more dispersed in their response to price changes
than they actually are. This happens partly because
the absence of preference information forces price to
account for more than its true effect. It seems that
when consumer preferences are “known,” the substi-
tution patterns in choices are well explained, thereby
mitigating the need for brand switches to be rational-
ized by differences in prices. Of course, the full effect
of price changes on choices (elasticity) depends not
only on the price coefficients but also on the brand-
specific constants and true mean qualities. Because
for any brand the latter vary across the estimated
models, the price elasticities will do so, too. Taken
together, the increased heterogeneity in quality beliefs
and price sensitivity implies that consumer respon-
siveness to prices is a lot more varied than tradi-
tional models would have us believe. Finally, we note
that although aggregate price effects are dampened
with the inclusion of stated preferences, there may
be individual cases where the effects move in the
opposite direction (larger effects with survey data).
We will return to these issues in later sections deal-
ing with individual-level insights. Figure 4 depicts the
individual-specific posterior means of price and dis-
play. Display effects, on average, have a larger mean
but, similar to price, exhibit somewhat lower vari-
ances when survey data are included.

5.3. Magnitude of Learning
The distribution of individual-level posterior means
of the initial perception biases is depicted in Figure 5.
Without survey information, initial perception biases
for the brands are more negative and less heteroge-
neous, indicating a larger amount of learning. The
extent of learning is determined not only by the ini-
tial perception biases but also by variances. Figure 6
presents initial precision, which is defined as inverse
of variance of quality perception. Note that in the
absence of the survey-based measures, initial percep-
tion biases are homogeneous across consumers and
initial precision is homogeneous across consumers
and brands. These are represented by solid vertical
lines in the graphs.

Figure 7 depicts the joint impact of these param-
eters on aggregate-level learning. There are two sig-
nificant differences between the two data scenarios.

Figure 4 Individual-Specific Posterior Means of Marketing Mix
Variables
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First, the estimated average learning during the sam-
ple period is “lower” when preference information
is accounted for. Said differently, the posterior per-
ceived quality levels are much smaller. Second, the
rate of learning is also very different. The inclusion
of survey information results in consumers updating
beliefs at a much “slower” rate. These two effects
suggest that the estimated learning patterns without
preference information are exaggerated. Note that this
pattern of exaggerated learning is true for all brands
in the data; however, it is more pronounced for the
large-share brands such as Colgate and Crest. In fact,
for Colgate and Mentadent, the learning patterns with
survey data are not significantly different from a flat
line (no learning), whereas for Crest and Aim, the
patterns are only weakly different from a no-learning
pattern.

Taken together, the utility (constants/marketing
mix effects) and learning parameters indicate that
without the incorporation of stated preferences, the
learning process is forced to proxy for differences
across consumers. This reflects the classic confound
between state dependence and heterogeneity. By cap-
turing the initial beliefs of individual consumers, we
are better able to frame the heterogeneity, which in
turn mitigates the need for the learning component
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Figure 5 Estimated Posterior Means of Initial Perception Bias
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to try to rationalize the unexplained variation. This
confound becomes even more stark when we examine
individual cases in what follows.

5.4. Individual-Level Insights
Although the patterns discussed in Figure 7 sug-
gest that there is little learning (for most brands) in
the data, the aggregate nature of the plots masks
the heterogeneous nature of learning. To investi-
gate heterogeneity in learning further, we examine
individual-level patterns for the extreme case of Col-
gate, where the aggregate pattern suggests no learn-
ing at all. Figure 8 depicts the learning patterns for
each household in our sample for Colgate. There are
three important points about this plot: First, including
survey data captures heterogeneity in learning. This
is depicted in the spread of the curves around the
mean curve. Second, in the absence of survey data,
the patterns of learning are very similar, whereas

with survey data, the nature of learning is varied.
In particular, with survey data, households can lower
their perceptions about Colgate’s quality. Finally, even
though the aggregate pattern suggests little learning
for Colgate (with survey data), there are households
that exhibit significant learning. These insights were
echoed for the other brands in our analysis as well.

To further examine heterogeneous learning, we
investigate a sample of households at a deeper level.
Table 4 depicts four households with different choice
patterns facing varied marketing mix environments.
For each household, the table also presents liking and
preferences. Figure 9 presents the estimated learning
patterns for them.

Household #3. This consumer makes five brand
choices over the sample period. She chooses Crest
four consecutive times and then switches to Colgate
on her last shopping trip. The top pair of graphs in
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Figure 6 Estimated Posterior Means of Inital Precision
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Figure 9 pertains to this household and suggests that
she has actively engaged in learning about Crest dur-
ing the sample period. Her mean quality perception
has noticeably increased, and her variance of quality
perception has remarkably decreased over successive
Crest choices. This preference reinforcement, coupled
with uncertainty reduction, indicates active learning
about Crest. However, a cursory examination of her
stated preferences reveals strong preferences for Crest.
Incorporating these data lessens the estimated degree
of learning for Crest. This is a clear case where with-
out data, the researcher’s learning about consumer
preferences is misconstrued as the consumer learning
about the brand. As discussed earlier, the survey data
also play a role in the consumers’ estimated price sen-
sitivity. Because Colgate is also rated favorably, the
switch to Colgate on the last purchase occasion does
not have to be explained by price differences. Conse-

quently, the estimated price coefficient is −4013 with-
out survey and −3050 with survey.

Household #297. This household buys Aquafresh
repeatedly and continues to do so even when the
price creeps above the mean price. It is only when
the price of Aquafresh is significantly above the mean
level that she switches over to Arm & Hammer. Her
brand choices are unique in that there is no other con-
sumer in the sample who bought Aquafresh six times
out of seven. The sample market share of Aquafresh
is only 15%. The large disparity between her and the
“average” Aquafresh consumer’s behavior leads her
to be classified as an active learner. A quick exami-
nation of the survey data information on liking and
familiarity tells a very different story. Aquafresh is not
only her most preferred brand but also the one she is
most familiar with. Given this information, it is obvi-
ous that the consumer buys Aquafresh not because of
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Figure 7 Estimated Aggregate-Level Learning

Arm & Hammer

0 10 20 30 40 50
5.2

5.4

5.6

5.8

6.0

6.2

–0.35

–0.25

–0.15

Aim

0 10 20 30 40 50

–0.30

–0.10

–0.20

Aquafresh

0 10 20 30 40 50
5.2

5.4

5.6

5.8

6.0
Colgate

0 10 20 30 40 50
7.0

7.5

8.0

8.5

Crest

0 10 20 30 40 50
7.0

7.2

7.4

7.6

7.8

8.0
Mentadent

0 10 20 30 40 50
7.5

8.0

8.5

9.0

M
ea

n 
qu

al
ity

 p
er

ce
pt

io
n

M
ea

n 
qu

al
ity

 p
er

ce
pt

io
n

Week Week

M
ea

n 
qu

al
ity

 p
er

ce
pt

io
n

Week

M
ea

n 
qu

al
ity

 p
er

ce
pt

io
n

Week

M
ea

n 
qu

al
ity

 p
er

ce
pt

io
n

Week

M
ea

n 
qu

al
ity

 p
er

ce
pt

io
n

Week

Without survey

With survey

state dependence or learning but simply because she
likes the brand. In other words, she is a zero-order
type consumer who exhibits no learning whatsoever.
Because preferences explain a large proportion of the
choice patterns, they also explain why her price coef-
ficient with the survey data is now less negative. The
estimated price coefficient is −3078 without survey
and −3051 with survey.

Households #334 and #55. In contrast to the pre-
viously discussed households, no brand switching is
observed during the sample period for these two
households. One only buys Colgate and the other
buys Aquafresh. A quick glance at Table 4, how-
ever, reveals that these households differ significantly

in their stated preferences and level of brand famil-
iarity. In a model without the survey information,
household #334 appears to be actively learning, but
once again the survey data reveal that the Colgate
choice can be explained by preferences alone. In con-
trast, household #55 is identified as learning about
Aquafresh even after survey data are included. This
happens because the survey data reveal the mean
liking of Aquafresh to be 4 and familiarity with
Aquafresh to be 3, which are both on the low side
of the rating scale. Consequently, the purchase string
suggests learning.

Our individual-level analysis uncovered many
more examples that offer insights similar to those pre-
sented in these examples. For the sake of brevity, we
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Figure 8 Estimated Individual-Level Learning for Colgate
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have limited ourselves to these cases. We would like
to point out that we did attempt to explain the dif-
ferences in learning across households using demo-
graphic covariates. Unfortunately, we had little suc-
cess in this endeavor, suggesting that differences in
learning stem from idiosyncratic differences across
households.

6. Discussion
6.1. Implications and Directions
To be clear, our results are based on a single data set
and one particular model specification. Although we
conjecture that our results are robust to changes in
model specification, we also caution the reader that
forming generalizations based on our results is not
without risk. That said, our results do raise a red
flag about the use of learning models in frequently
purchased, mature product categories. Although there
will be numerous contexts and applications where
learning remains an important aspect of consumer
behavior, the onus falls on the researcher to document
and provide evidence in support of the phenomena.

This paper raises questions about the identifica-
tion of learning models because different households
may have different (and unobservable) initial condi-
tions. Without a strategy for dealing with the hetero-
geneity in initial conditions, identification of learning
is difficult, to say the least. In our application the
availability of survey data helps address the problem;
however, such data are not universally available. As

such, it would seem that there is no recourse left to
researchers wishing to use Bayesian learning models.
We do not share this fatalistic attitude. On the con-
trary, we believe that our results should spur interest
in merging varied data sources to learn about con-
sumer preferences. There is already movement in this
direction in the marketing and economics disciplines.
For example, recent work by Dubé et al. (2009) aims at
using a conjoint setting to measure discount factors.
This moves us away from the traditional approach
to dynamic discrete choice models, which are often
identified only from parametric and functional form
assumptions. Like them, this paper shows that using
data to construct consumer beliefs offers new and
exciting avenues for research aimed at understanding
consumer behavior. Our findings question the blind
substitution of structure in place of data and under-
line the pitfalls of taking identification restrictions for
granted. We hope this paper will encourage inter-
est in constructing well-thought-out models where
identification is driven more by variation in data than
by assumptions.

We recognize that there will be instances where
additional data will be unavailable and researchers
will need to make strong assumptions to facilitate
identification. In such cases, we suggest that they pro-
vide evidence as to the robustness of their estimates
by perturbing these identification restrictions. In addi-
tion, picking categories where learning is easy to jus-
tify (diapers, pet food, new products), employing a
rich and flexible specification of heterogeneity, and
using smart prior initialization and creative identifica-
tion arguments will all help in convincing the reader
that the results obtained are relevant.

On the substantive front, our results highlight a
number of interesting issues. We show that a mis-
specification of the model results in biased estimates
for marketing mix effects and for the heterogeneity in
them. These clearly have implications for managerial
decision making. Our findings also reveal that con-
sumers are heterogeneous not only in the way they
react to marketing stimuli but also in terms of the
order of their decision process. Although such “pro-
cess heterogeneity” has been well documented in the
literature (see, e.g., Givon and Horsky 1979), there
may be reason to allow for such heterogeneity when
estimating models such as learning. For example, in
the absence of survey data, it might be worthwhile
to allow consumers to be endogenously bucketed as
“zero-order” or “Bayesian learners” as part of the
estimation algorithm. We are currently working on
implementing methods in this direction.

Finally, we note that the model implemented in this
paper makes a number of assumptions. For exam-
ple, we assume that consumers are myopic and risk
averse. A natural extension would be to relax these
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Table 4 Examples of Individual-Level Scanner and Survey Data

Price
Purchase
occasion Choice AH AM AF CG CR MT PS

Household #3

1 CR 20202 10242 20631 20663 00790 30023 10332
2 CR 30239 10380 20466 20588 10500 40480 10033
3 CR 30174 10776 20229 20560 10440 30503 10874
4 CR 30410 10114 20629 20863 10800 40064 10116
5 CG 20837 10756 20033 00860 20877 30449 10190

Liking 2 4 4 7 7 4 2
Familiarity 4 4 5 7 7 3 2

Mean price 20765 10425 20368 20534 20438 30552 10327

Household #297

1 AF 20478 10210 10680 20542 20741 30230 10443
2 AF 20737 10419 10680 20616 20535 40074 10097
3 AF 20833 10237 20434 20696 20476 40263 10108
4 AF 30239 10380 20466 20588 20558 40480 10033
5 AF 20905 10452 20060 20596 20488 30679 10546
6 AF 40120 10035 10680 20457 20624 30284 10032
7 AH 20490 10715 20737 20584 20507 30341 10748

Liking 4 4 7 4 4 1 4
Familiarity 4 4 7 5 5 2 4

Mean price 20765 10425 20368 20534 20438 30552 10327

Household #334

1 CG 20478 10210 20422 20542 20741 30230 10442
2 CG 20478 10210 20422 20320 20741 30320 10442
3 CG 20231 10355 30404 20512 20707 30225 10190
4 CG 30957 10474 30072 10720 20577 30797 10095
5 CG 20860 10442 20434 20240 20549 30844 10485
6 CG 20444 00853 20434 20673 20463 30546 10180
7 CG 20614 10755 20166 20731 20490 30465 10260
8 CG 20230 20030 20275 20050 20610 30823 10045
9 CG 30319 10270 20325 20020 20917 30563 10352

10 CG 20897 10425 20533 20489 20812 30988 10213

Liking 1 3 3 7 5 6 3
Familiarity 4 5 7 7 7 7 3

Mean price 20765 10425 20368 20534 20438 30552 10327

Household #55

1 AF 20582 10275 20060 30156 20890 30501 10290
2 AF 20231 10355 10860 20512 20707 30225 10190
3 AF 20475 10007 20070 20371 20319 30668 10375
4 AF 20857 10044 10720 20763 20486 30215 10243

Liking 2 1 4 2 5 6 3
Familiarity 3 1 3 5 6 7 7

Mean price 20765 10425 20368 20534 20438 30552 10327

Note. AH, Arm & Hammer; AM, Aim; AF, Aquafresh; CG, Colgate; CR, Crest; MT, Mentadent; PS, Pepsodent.

assumptions and investigate the degree of experimen-
tation that emerges with and without the inclusion of
survey data.

7. Summary and Conclusion
Consumers in choosing brands within a product
category act intelligently. They use their existing
preferences and update those based on their own

consumption experiences. A key problem in the iden-
tification of learning models (or state dependence
models in general) is that initial conditions are dif-
ficult to pin down. Without these initial conditions
being known, a clear identification of the degree of
learning is all but impossible. In this study we cap-
ture consumers’ initial beliefs as a function of stated
preferences and investigate the impact these data
have on the scope, degree, and nature of learning in
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Figure 9 Examples of Individual-Level Learning
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the sample. Our findings reveal that including stated
preferences and familiarity information allows for a
better characterization of heterogeneity and reduces
the extent of learning.

Our results have implications for both practitioners
and scholars. For managers, the findings suggest that
consumers’ preferences of brands in established cat-
egories might be much stronger than extant models
would have you believe. This in turn has implications
for the effectiveness of pricing and promotional deci-
sions (see, e.g., Dubé et al. 2008, Freimer and Horsky
2008). For scholars our findings reveal new insights
into the way learning models are identified and offers
avenues for future research in this area.
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Appendix. MCMC Implementation Details

A.1. Overview
The full parameter set of the Bayesian learning model
is defined as follows: ä = ∪iäi × ê̄, where äi =

8Qi11 0 0 0 1QiJ−11�i1�i1�i1�
S
ij1 � for �=11 0001Ti−19 represents a set

of the individual-level parameters, and ê̄ = 8�̄11 0 0 0 1 �̄J−11 �̄9
stands for a set of the aggregate-level parameters. The
expected utility specification is now represented by

U E
ij1t = Qij +

[

exp4�̄+�iFAMij5

(

�̄j +�i

(

LIKij −
1
N

N
∑

i=1

LIKij

))

+

t−1
∑

�=1

yij1��
S
ij1�

]

·

[

exp4�̄+�iFAMij5+
t−1
∑

�=1

yij1�

]−1

+�iXij1t +�Uij1t 0

Given that �Uij1 t is iid Type I extreme value distributed, the
resulting likelihood function is of multinomial logit form,
as given by

Li4yi � Xi1Si3äi1 ê̄5 = 6yi � Xi1Si3äi1 ê̄7

=

Ti
∏

t=1

J
∏

j=1

( exp4Ū E
ij1 t5

∑J
q=1 exp4Ū E

iq1 t5

)yij1 t

1

where Si is individual i’s survey information, Ū E
ij1 t stands

for the deterministic part of expected utility, and the bracket
notation 6 · � · 7 is hereafter used for a generic expression of
conditional probability distributions.

To construct an MCMC sampler for the Bayesian learn-
ing model presented here, we complete our hierarchi-
cal setup by specifying prior distributions for the param-
eters. For notational simplicity, we further decompose
äi into ëi = 8Qi11 0 0 0 1QiJ−11�i9 and ìi = 8�i1�i9 such
that äi =ëi ∪ìi. The former (ëi) represents a set of

the individual-level parameters pertaining to the standard
multinomial logit model, whereas the latter (ìi) stands
for a set of the individual-level parameters unique to the
Bayesian learning model. The prior distributions of the
model parameters are specified as follows.

1. Individual-level parameters in the standard multino-
mial logit model, ëi = 8Qi11 0 0 0 1QiJ−11�i9:

6ëi � ë̄ 1Vë̄ 7= MVN4ë̄ 1Vë̄ 51

6ë̄ � p1P7= MVN4p1P51 and 6Vë̄ � r1R7= InvW4r1R50

2. Individual-level learning parameters, ìi = 8�i1�i9:

6ìi � ì̄1Vì̄7= MVN4ì̄1Vì̄51

6ì̄ � h1H7= MVN4h1H51 and 6Vì̄ � g1G7= InvW4g1G50

3. Aggregate-level learning parameters, ê̄ =

8�̄11 0 0 0 1 �̄J−11 �̄9:

6ê̄ � qê̄1Qê̄7= MVN4qê̄1Qê̄50

4. Signal noises 8�S
ij1 � 9for �=110001Ti−1 in the Bayesian learn-

ing model are by design drawn from a standard normal
distribution. That is,

6�S
ij1 � ���1�

2
�7= N4��1�

2
�51 where �� = 0 and �2

� = 10

Hyperparameters p, P , r , R, h, H , g, G, qê̄ , and Qê̄ are
appropriately chosen to make the corresponding prior dis-
tributions diffuse. These prior distributions, coupled with
the likelihood function, specify the target posterior distri-
bution from which we need to sample.

Our sampling procedure starts with an initialization of
the MCMC sampler. We draw the starting values of ë̄ 1Vë̄ ,
ì̄1Vì̄, ê̄, and 8�S

ij1 �
9t−1
�=1 from their prior distributions and

those of ëi and ìi from MVN4ë̄ 1Vë̄ 5 and MVN4ì̄1Vì̄5,
respectively. Our sampler then cycles through the following
steps, each one performed conditional on current values of
all other parameters in the model.

Step 1. Update ëi by a Metropolis-Hastings (hereafter,
M-H) sampler.

Step 2. Update ë̄ and Vë̄ by a Gibbs sampler.
Step 3. Update ìi by an M-H sampler.
Step 4. Update ì̄ and Vì̄ by a Gibbs sampler.
Step 5. Update ê̄ by an M-H sampler.
Step 6. Update 8�S

ij1 � 9
t−1
�=1 by an M-H sampler.

Sampling procedures in Steps 1 and 2 are now well
established in the literature because they are the same as
those for a standard random coefficient logit. The subse-
quent steps involve updating the parameters specific to the
Bayesian learning processes. Narayanan and Manchanda
(2009) propose an MCMC sampling scheme for a heteroge-
neous version of the probit-based Bayesian learning model.
We adapt their methodology to our logit-based frame-
work by appropriate substitutions of the M-H steps where
needed. A noticeable adaptation in our sampling procedure
outlined above is that the series of signal noises are sam-
pled independently and updated simultaneously in Step 6,
thereby making the chain easier to construct and faster to
sample. Full details on the MCMC sampling scheme are
presented below.
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A.2. Details
Given the prior specifications and the likelihood function
of the Bayesian learning model, the joint posterior distribu-
tion of all the parameters conditional on the data is propor-
tional to

I
∏

i=1

(

6yi � Xi1Si3ëi1ìi1 ê̄1 8�S
ij1 � 9

Ti−1
�=1 76ëi � ë̄ 1Vë̄ 76ìi � ì̄1Vì̄7

·

Ti−1
∏

�=1

6�S
ij1 � ���1�

2
�7

)

× 6ë̄ � p1P76ì̄ � h1H76ê̄ � qê̄1Qê̄70

We here illustrate the MCMC sampling procedure out-
lined in the estimation section. Following are the details of
each of six steps employed to estimate the proposed model
in this study.

Step 1. Update ëi = 8Qi11 0 0 0 1QiJ−11�i9 by an M-H
sampler.

The full conditional distribution of ëi is

6ëi � rest7∝ 6yi � Xi1Si3ëi1ìi1 ê̄1 8�S
ij1 � 9

Ti−1
�=1 76ëi � ë̄ 1Vë̄ 71

and we generate a vector of proposal values ë ′
i using a sym-

metric random-walk M-H algorithm. The acceptance prob-
ability of ë ′

i is min411 46ë ′
i � rest75/46ëi � rest755. This step is

conducted on an individual basis.
Step 2. Update ë̄ and Vë̄ by a Gibbs sampler.
Because of the conjugate prior specification for ë̄ and Vë̄ ,

their full conditional distributions are

6ë̄ � rest7= MVN
(

V −1
ë̄

∑I
i=1 ëi + P−1p

V −1
ë̄

I + P−1
1 4V −1

ë̄
I + P−15−1

)

and

6Vë̄ � rest7= InvW
(

r + I1

(

R+

I
∑

i=1

44ëi − ë̄ 54ëi − ë̄ 5′5

)−1)

1

from which it is straightforward to sample.
Step 3. Update ìi = 8�i1�i9 by an M-H sampler.
The full conditional distribution of ìi is

6ìi � rest7∝ 6yi � Xi1Si3ëi1ìi1 ê̄1 8�S
ij1 � 9

Ti−1
�=1 76ìi � ì̄1Vì̄71

and we generate a vector of proposal values ì′
i using a sym-

metric random-walk M-H algorithm. The acceptance prob-
ability of ì′

i is min411 46ì′
i � rest75/46ìi � rest755. This step is

conducted on an individual basis.
Step 4. Update ì̄ and Vì̄ by a Gibbs sampler.
Because of the conjugate prior specification for ì̄ and Vì̄,

their full conditional distributions are

6ì̄ �rest7=MVN
(

V −1
ì̄

∑I
i=1ìi+H−1h

V −1
ì̄

I+H−1
14V −1

ì̄
I+H−15−1

)

and

6Vì̄ �rest7= InvW
(

g+I1

(

G+

I
∑

i=1

44ìi−ì̄54ìi−ì̄5′5

)−1)

1

from which it is straightforward to sample.
Step 5. Update ê̄ by an M-H sampler.
The full conditional distribution of ê̄ is

6ê̄ � rest7∝
I
∏

i=1

6yi � Xi1Si3ëi1ìi1 ê̄1 8�S
ij1 � 9

Ti−1
�=1 76ê̄ � qê̄1Qê̄71

and we generate a vector of proposal values ê̄′ using a sym-
metric random-walk M-H algorithm. The acceptance prob-
ability of ê̄′ is min411 46ê̄′ � rest75/46ê̄ � rest755. Notice that
this step is conducted for the full sample.

Step 6. Update 8�S
ij1 � 9

Ti−1
�=1 by an M-H sampler.

The full conditional distribution of 8�S
ij1 � 9

Ti−1
�=1 is

68�S
ij1 � 9

Ti−1
�=1 � rest7 ∝ 6Xi1Si3ëi1ìi1 ê̄1 8�S

ij1 � 9
Ti−1
�=1 7

·

Ti−1
∏

�=1

6�S
ij1 � ���1�

2
�71

and we generate proposal values 8�S ′
ij1 � 9

Ti−1
�=1 using an inde-

pendent M-H algorithm. Their prior density is used to gen-
erate independent proposal values. The acceptance proba-
bility of 8�S ′

ij1 � 9
Ti−1
�=1 is

min
(

11
6Xi1Si3ëi1ìi1 ê̄1 8�S ′

ij1 � 9
Ti−1
�=1 7

6Xi1Si3ëi1ìi1 ê̄1 8�S
ij1 � 9

Ti−1
�=1 7

)

0

This step is conducted on an individual basis.
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