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1. Introduction

Rich data sets that contain information on a large number of variables for each ob-

servation are increasingly available to empirical researchers. Such data offer many

opportunities for analyzing complex phenomena but pose practical and theoretical

challenges. One key complication is that researchers may be uncertain about what

specification to use when formulating a statistical model and that the complexity of

choosing a specification increases rapidly in the number of available covariates.

There are a variety of model selection devices in the statistics and econometrics

literature that can be used to aid empirical researchers in the choice of model specifica-

tion; see, e.g. Hastie et al. (2009). A popular structure that underlies many statistical

model selection procedures is sparsity. Sparsity is a general term for an assumption

which states that the true model depends only on a small subset of the unknown

parameters. A leading example is the sparse linear regression model

yi = x′iβ0 + εi, s0 = |support(β0)| � n

where i indexes observations, n denotes sample size, yi is an outcome, xi are covariates,

εi are conditional mean 0 idiosyncratic disturbance terms, and β0 is an unknown

parameter to be estimated with support(β0) = S0 and s0 = |S0|. Corresponding

to the notion of sparsity, a sparse estimator returns a model in which only a small

number of estimated parameters are nonzero. There are a variety of sensible sparse

estimators in the literature, with a leading example being the Lasso estimator of

Frank and Friedman (1993) and Tibshirani (1996).

The use of statistical model selection devices complicates drawing inferences for

target parameters that depend on the selected model such as regression coefficients,

individual specific treatment effects, elasticities, and other counterfactual objects.

Heuristically, the difficulty arises due to the fact that model selectors will tend to
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be imperfect in finite samples. Estimated parameters following model selection thus

exhibit behavior akin to that of parameters estimated in misspecified models. See, for

example, Leeb and Pötscher (2008) and Pötscher (2009) for formal development of

the issues surrounding post-model-selection inference.

In this paper, we consider an intuitive and computationally simple way to assess

the sensitivity of statistical conclusions to model selection mistakes in which relevant

features are excluded from the selected model. We start with a scalar target parame-

ter, ϑ0, that may depend on the entirety of a high-dimensional parameter vector and

additional inputs. For example, we may be interested in ϑ0 = (x∗)′β0, the conditional

mean for individuals with characteristics x∗, in the high dimensional linear model

described above. Our proposal is to form sensitivity sets by starting with a typical

confidence interval obtained from an initially selected model and then systematically

enlarging the interval by perturbing the model to account for possible model selection

mistakes. More formally, our proposed confidence set is constructed as the union of

standard statistical confidence sets based on the convex hull of CI(Ŝup) ∪ CI(Ŝlow),

where CI(S) denotes a confidence region for ϑ0 based on a model S under the as-

sumption that S is the correct model. Ŝup and Ŝlow are in turn models selected from

the data based on

1. An initially selected model Ŝ0 chosen via a standard method targeting model fit

to the data.

2. Two additionally selected models: an upper model, Ŝup ⊇ Ŝ0, and a lower model,

Ŝlow ⊇ Ŝ0, chosen to make the upper and lower bounds of the confidence set for

the target parameter as large and small, respectively, as possible by adding a

small number of variables to the model Ŝ0.

Our focus is on situations with a large number of potential variables and where
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the initial model selection is performed with a standard high dimensional estimator

like the Lasso.1 The subsequent model selection steps depend on the functional of

interest and target the behavior of that functional accommodating model selection

mistakes made in the first step. The subsequent steps are important since mistakes are

inherent to all model selection procedures unless unrealistic conditions are imposed

on the formal setting.2

We term the procedure outlined above ‘targeted undersmoothing’ (TU) and we

term the resulting intervals ‘targeted undersmoothing intervals’ (TU intervals).

This naming is due to a useful, though informal, heuristic analogy between high-

dimensional estimation and nonparametric estimation. A key problem in nonpara-

metric regression estimation is to choose a bandwidth (for kernel-based estimates)

or a set of approximating functions (in series- or sieve-based methods). Sufficiently

small bandwidths and more flexible sets of approximating functions each lead to un-

dersmoothing in estimating the target function in the sense that bias may be taken to

be small relative to sampling variation. Undersmoothing can thus be used to justify

inference based on correctly-centered Gaussian approximations. For a review, see Li

and Racine (2006). Choosing a bandwidth or set of approximating functions is not

unlike choosing a penalty parameter in `1-penalized regression where smaller values

of the penalty parameter result in more complex models.

Unfortunately, simply decreasing the penalty parameter in penalized estimation of a

sparse high-dimensional model does not alleviate bias in the same way as decreasing a

bandwidth in a traditional kernel problem due to the complexity of the model space in

1The proposed approach to sensitivity analysis could be used with any initial model, such as an intuitively selected

baseline model, and in low-dimensional settings though we would recommend adopting the approach of Cattaneo

et al. (2018) and Cattaneo et al. (2019) in low and moderate dimensional settings.
2In the linear model, such conditions include β-min conditions, which assert that nonzero unknown parameters

must be bounded uniformly away from zero in absolute value, and conditions restricting the association between

covariates.
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high-dimensional problems. Heuristically, moderate strength signals whose exclusion

leads to bias are hard to pick out from among the many irrelevant variables; and

as the penalty parameter is lowered beyond theoretically justified levels, it is likely

that the first variables to enter the model will be irrelevant signals that happen to

be moderately correlated to the outcome in the sample at hand. Intuitively, the TU

approach addresses this problem by undersmoothing in those directions that seem to

be most likely to account for bias in the target parameter by directly focusing on the

functional of interest rather than model fit.

Our paper complements many interesting papers that look at related problems.

There is now a relatively large literature aimed at delivering uniformly valid infer-

ence for pre-specified target parameters where machine learning or model selection is

used to estimate nuisance functions; see, for example, Chernozhukov et al. (2016) or

Bickel et al. (1998) and references therein. Wager and Athey (2015) and Athey et al.

(2016b) study asymptotically Gaussian inference for heterogeneous treatment effects

using random forests in settings with low-dimensional controls. Athey and Imbens

(2016) study estimation of heterogeneous treatment effects in conjunction with ma-

chine learning, relying on tree-based methods and a sample-splitting technique. Athey

et al. (2016a) perform residual rebalancing to estimate average treatment effects with

high dimensional control variables. Cai and Guo (2016) consider construction of con-

fidence sets for dense functionals given by a(β) = ‖β‖l for various 1 6 l 6 ∞. Both

Zhu and Bradic (2016) and Zhu and Bradic (2017) construct hypothesis tests for

objects similar to those considered in our paper via `1-projections of coefficient esti-

mates to the set of coefficients consistent with the null. Zhu and Bradic (2016) only

considers linear functionals while Zhu and Bradic (2017) considers general nonlinear

functionals under strong sparsity conditions. Li and Müller (2020) consider inference

about a single regression coefficient in a high-dimensional linear model subject to an
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explicit constraint on the `2 norm of the coefficients on the remaining variables in the

model. This approach provides an interesting complement to our approach as the ex-

plicit constraint on the `2 norm of coefficients is akin to a known level of sparsity but

does not induce sparsity. Finally, Armstrong and Kolesar (2017) considers confidence

intervals for functionals of a nonparametric regression function constructed given a

researcher-specified upper bound on the true Lipschitz constants of the unknown non-

parametric regression function in a low-dimensional setting. This approach is similar

in spirit to our proposal where the known upper bound on the Lipschitz constant is

analogous to a known upper bound on the level of sparsity s0.

2. Targeted Undersmoothing for Sensitivity Analysis

This section describes the setting for TU and defines the TU algorithm. The discussion

in this section is kept at a general level. Specific examples with sparse linear models

and model selection via Lasso are presented and discussed in the sections that follow.

The setting is inference for an unknown parameter of interest ϑ0 ∈ R, which is a

real scalar defined by a functional

ϑ0 = a(P0).

We assume a is a known functional of a data generating process P0. We assume that

P0 depends on a true unknown parameter β0 with dimension dim(β0) = p. We are

primarily interested in high-dimensional applications and thus assume sparsity. Set

S0 = support(β0) and s0 = |S0|

so that s0 is the number of nonzero components of the vector β0.3

3The setting and results in this paper and its supplement can be extended to the case that β0 can be decomposed

into a sparse component and a small component, so that β0 = β
(1)
0 + β

(2)
0 , with |support(β(1)

0 )| 6 s0 and ‖β(2)
0 ‖2

sufficiently small.
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Consider a high-level setting where the researcher can construct the following ob-

jects.

1. A method for model selection, based on an appropriate measure of overall fit,

giving an initial estimated support Ŝ0 for S0 with ŝ = |Ŝ0|; and, given Ŝ0, an

estimate ϑ̂.

2. A method for estimating an asymptotically valid confidence region for ϑ0 for

known S0. For each sufficiently sparse subset K ⊆ {1, ..., p}, [`K , uK ] is a feasible

estimated confidence set for ϑ0 with the additional property P([`K , uK ] 3 ϑ0) is

approximately 1− α for some predetermined α > 0 whenever K ⊇ S0.4

3. An upper bound s̄ for assessing sensitivity to sparsity assumptions.

Algorithm 1 below defines TU. It takes an initially selected model Ŝ0, and then

searches over certain deviations that include Ŝ0 and add no more than s̄ extra vari-

ables. To choose how to add variables, we do not look at model fit but rather which

deviation leads to the largest change in inferential statements about the parameter

of interest. We do this separately for the upper and lower bound of the interval.

Algorithm 1. Targeted Undersmoothing: TU(s̄) Intervals.

Step 1. Select a model Ŝ0 with ŝ = |Ŝ0| by a fixed model

selection procedure.

Step 2. Undersmoothing procedure.

Initialize: K̂ low, K̂up = Ŝ0

While |K̂ low|, |K̂up| 6 s + ŝ

Set K̂ low = K̂ low ∪ {ĵlow} with

ĵlow = arg minj6p `K̂low∪{j}

Set K̂up = K̂up ∪ {ĵup} with

ĵup = arg maxj6p uK̂up∪{j}

Set Ŝlow = K̂ low and Ŝup = K̂up

Step 3. Set [`, u] = [`Ŝlow , uŜlup ].

4Formally, supK⊇S0,|K|<r |P([`K , uK ] 3 ϑ0)− (1− α)| < t for some tolerance t and range r.
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An appealing feature of Algorithm 1 is that it produces a path for how upper and

lower bounds change due to incrementally adding one variable at a time to a model

as a byproduct. I.e. at each step from 1 to s̄, minj6p `K̂low∪{j} and maxj6p uK̂up∪{j}

provide the smallest lower bound and largest upper bound on a confidence set for the

parameter of interest that can be obtained by adding one variable to the model used

in the previous step.

This path is analogous to the common empirical practice of presenting results

for target parameters from a baseline model and then considering sensitivity of this

target parameter by seeing how estimates change after successively adding regressors

one at a time starting from the baseline model. The key difference is that relative

to this common practice, variables in Algorithm 1 are added in a data-driven way

where each additional variable is chosen adversarially to lead to the largest change

in the confidence set relative to the previous model. As illustrated in the empirical

examples, this path is easy to display and provides an assessment of the sensitivity of

conclusions within a well-defined and easily understood class of perturbations from a

baseline model.

By starting Algorithm 1 with a model selected through a high-quality model se-

lection procedure, we guarantee that the baseline model does a good job fitting the

data at hand.5 Setting s̄ = 0 then corresponds to this procedure producing no model

selection mistakes which can happen in scenarios where oracle model selection is pos-

sible; see, for example, Fan and Li (2001), Zou (2006), and Bunea et al. (2007) for

sufficient conditions in the high-dimensional linear model setting. As one then con-

siders increasing s̄, one is considering scenarios where the initial selector is allowed to

have made increasingly many selection mistakes.

5Note, TU starting from an intuitively selected baseline can be viewed as traditional sensitivity analysis without an

initial model selection stage. A high-quality method for estimating Ŝ0 can potentially lead to improved performance

relative to an intuitive baseline that fails to capture important predictive features in the data.
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Given the dependence of the proposed procedure on the choice of s̄, we feel that the

proposed approach will be most helpful when viewed through the lens of sensitivity

analysis. Specifically, one may look at how confidence regions for objects of interest

change as one varies s̄ over sensible values, for example, s̄ ∈ {0, 1, ..., s̄∗}. When

feasible, one could also consider increasing s̄ one unit at a time until confidence

regions enlarge to the point that economic conclusions differ substantively from the

initial model. By looking at several values for s̄, one gains insight into how sensitive

conclusions are to the number of model selection mistakes made by the initial selector.

This approach is similar to applications of sensitivity analysis in treatment effects

estimation where a variety of approaches to sensitivity analysis exist for gauging

sensitivity of causal estimators to violations of underlying identifying assumptions;

see, for example, Rosenbaum (2002) and Manski (2003) for textbook reviews of classic

approaches and Small (2007), Conley et al. (2012), Rosenbaum (2015), Andrews et al.

(2017), and Oster (2017) for some recent examples in the statistics and econometrics

literature.

While we focused the discussion on sensitivity intervals, TU can be used to target

hypothesis testing as well. Suppose the null hypothesis of interest is H0 : ϑ0 = ϑ̄ for

a prespecified ϑ̄ and that, given a model S ⊆ {1, ..., p}, that ŴS is an observable test

statistic with associated p-value p̂S. Then TU can be used by choosing K̂ ⊇ Ŝ0 and

taking the set |K̂| 6 s̄ + ŝ which makes the test most conservative (equivalently the

set of variables that maximizes p̂Ŝ).

In an online supplement, we provide a set of high-level conditions under which

a variant of Algorithm 1 that replaces forward stepwise selection in Step 2 with

full best subsets provides uniformly valid inference for the target parameter in the

scenario where one has a known upper bound on s0. In this respect, one may use the

idea underlying TU intervals to obtain uniformly valid confidence intervals in cases
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where the researcher believes the required conditions, including a known upper bound

on s0, are satisfied.6

3. Application I: Heterogeneous Treatment Effects from JPTA

The impact of job training programs on the earnings of trainees, especially those with

low income, is of interest to both policy makers and academic economists. Evaluating

heterogeneous causal effect of training programs on earnings is difficult due to the

fact that individual characteristics vary across the sample; it is unlikely that many

individuals share exactly the same values of observed covariates. The problem is made

worse the higher the dimension of the collected covariates.

We consider data from a randomized training experiment conducted under the

Job Training Partnership Act (JTPA). In the experiment, people were randomly

assigned the offer of JTPA training services. Given the random assignment of the

offer of treatment, we focus on estimating the average treatment effect of the offer of

treatment, or the intention to treat effect, conditional on individual characteristics.

To capture the effects of training on earnings, we estimate a model of the form

yi = x′iξ0 + (di · xi)′γ0 + εi

where di indicates whether training was offered, the outcomes yi are earnings, xi is a

vector of covariates which includes a constant, εi is an unobservable, and (ξ0, γ0) ≡ β0

are parameters. In this example, we limit the analysis to the sample of adult males.

Earnings are measured as total earnings over the 30 month period following the

assignment into the treatment or control group, and average earnings in the sample

are $19,147. Observed control variables are dummies for black and Hispanic persons, a

dummy indicating high-school graduates and GED holders, five age-group dummies, a

6The online supplement also describes asymptotic properties of functionals ϑ̂ estimated by plugging in β̂, an

estimated high-dimensional parameter. This may be helpful as TU intervals are built around ϑ̂.
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marital status dummy, a dummy indicating whether the applicant worked 12 or more

weeks in the 12 months prior to the assignment, a dummy signifying that earnings

data are from a second follow-up survey, and dummies for the recommended service

strategy. See Abadie et al. (2002) for detailed information regarding data collection

procedures, sample selection criteria, and institutional details of the JTPA along with

additional facts and discussion about the JTPA training experiment. The dataset has

5102 observations.

In this example, we are interested in estimating TU intervals for a fixed, individual-

specific treatment effect. We form estimates by first calculating a Lasso-based model

selection and Post-Lasso estimator of the coefficients

Ŝ0, (ξ̂PL, γ̂PL)

using the procedure detailed in Appendix A. Then, given an individual with covariates

x∗, we calculate a corresponding functional of interest, the individual-specific intent

to treat effect,

ϑ0 = ϑ0(x∗) = x∗′γ̂PL.

There are many ways to construct regressors from the set of dummy variables

available. As we are working in the sparse linear model framework, it is important

that we believe that sparsity in the set of regressors is a reasonable approximation

to the underlying process. With this consideration in mind, we construct the set of

regressors over which model selection will occur by combining two different basis

expansions of the raw control variables. Using different bases provides additional

robustness by increasing the plausibility of a sparse representation within the union

of the set of considered regressors.

To obtain the first representation for xi, we consider all products of the discrete

variables available. That is, we adopt the common convention of including the dummy
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variables themselves, all first order interactions between the main dummy variables,

all second order interactions, and all further higher order interactions. Excluding

empty and small cells, the dimension of this representation of the covariate space is

313.7

For the second representation, we consider the Hadamard-Walsh basis defined as

follows. Let vi1, ..., vik denote the original set of indicator variables. Let each sub-

set A ⊆ {1, ..., k} index a transformation of (vi1, ..., vik) given by ψA(vi1, ..., vik) =

(−1)|A∩{j:vij=1}|. The terms ψA(vi1, ..., vik) then define the regressors used in the

second representation of the raw input variables. The Hadamard-Walsh expansion

is both a set-Fourier basis as well as a generalization of the logical function xor-

“exclusive or.” In particular, if the cardinality of A is 2 so that A = {k1, k2} then

ψ{k1,k2}(vi1, ..., vik) = xor(vik1 , vik2).
8

After appending the two representations, the result is that dim(xi) = 2927, in-

cluding the constant term. Interacting xi with the di, the total dimensionality of the

model parameters is 5854, which exceeds n = 5102. The assumption of sparsity over

β0, which implies sparsity over both ξ0 and γ0, is thus important in this example.

No researcher would include the 2927 main effects, and very few would believe that

including only the baseline 313 main effects would be sensible in this setting. Rather,

we are relying on a model selector to pick out the main effects that are important for

predicting the outcome in the control state and thus likely useful for reducing vari-

ance and for understanding baseline outcomes and to pick out important variables

that help us understand treatment effect heterogeneity. As such selectors will likely

be imperfect, we then wish to gauge whether conclusions about objects of interest are

7Specifically, we start by eliminating all variables with 6 5 nonzero entries in either the control or treated subsam-

ple. After these deletions, we then remove any variables if the corresponding diagonal R term in QR decomposition

of the design matrix was < 10−6 over either the control or treated subsample.
8We choose to only include ψA terms as potential covariates for 1 < |A| < 6. Note that for |A| = 1, the resulting

transformations are perfectly correlated to the original indicator variables and are excluded.
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Fig 1. JTPA CATE Estimates: Hadamard-Walsh Specification

Note: These figures report estimates of the treatment effect for each individual in the JTPA sample along with
pointwise 95% confidence intervals where the set of controls is constructed by taking all possible interactions of the
baseline dummy variables and augmenting with the Hadamard-Walsh basis as described in the main text.
Individuals are sorted on the horizontal axis according to the percentile rank of their estimated effect ϑ̂i = x′iγ̂PL.
Estimates based on OLS and Post-Lasso are reported in the top panel. The bottom panel presents results based on
TU with s̄ = 1 (“TU(1)”) and with s̄ = 5 (“TU(5)”) respectively. It is important to note that vertical axis is
different in each figure.

sensitive to the possibility that a small number of variables - either main effects or

interactions - have been excluded from the model.

Evaluating ϑ0 = ϑ0(x∗) requires the specification of a fixed covariate x∗. As noted

above, ϑ0(x∗) is intent to treat for an individual with given observable characteristics

x∗. For simplicity and illustration, we set x∗ = xi for each individual i in the dataset.

The values xi are treated as fixed (nonrandom). We thus calculate and perform TU

for n functionals in the set {ϑ0(x∗) = ϑ0(xi)}ni=1 treating the functional for each xi as

the object of interest in turn.

Figure 1 presents pointwise intervals for the individual specific effects ϑ0,i for all

individuals i = 1, ..., n under four different inferential methods using the variables

defined above.9 Therefore, in each panel, an inferential procedure is carried out a total

of n times for n different functionals indexed by i. The first panel presents OLS-based

9We provide results using only the first set of variables formed from the usual construction of interactions in a

supplementary appendix.
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confidence intervals, using only the standard multiplicative interaction expansion.

The second panel presents oracle-style confidence intervals, which ignore first stage

model selection. Interestingly, the initial model selection procedure picks terms from

both the interaction expansion and the Hadamard-Walsh expansion. The third panel

presents TU(1) estimates using s̄ = 1, and the fourth panel presents TU(5) estimates

using s̄ = 5. The TU intervals are calculated according Algorithm 1. In each panel,

the horizontal axis indexes individuals, sorted according to the percentile rank of their

estimated effect ϑ̂i = x′iγ̂PL. The vertical axis represents estimates and intervals for

ϑ̂i.

Using s̄ = 1 we see that the interval lengths increase relative to the oracle-style

intervals. There still remains a set of individuals for whom the corresponding TU

interval excludes zero. With s̄ = 5, for all individuals, the corresponding intervals

contain zero. Though not pictured in Figure 1, we note that all intervals for individual-

specific treatment effects include 0 as soon as s̄ = 2. Note that certain OLS-based

intervals have very wide range relative to all TU(5) intervals; some individuals have

upper OLS-based interval bounds exceeding $250,000 and lower OLS-based interval

bounds exceeding $-250,000.

We report results for testing the null hypothesis of no treatment heterogeneity,

H0 : γ0 = 0, in Table 1. The procedure is implemented using the standard Wald test.

The null hypothesis is rejected for s̄ 6 1 at the 5% level but not to rejected for s̄ > 2.

Taken together, the results in this section suggest there is mild evidence for treat-

ment effect heterogeneity in this example. We would reject the hypothesis of no het-

erogeneity and also obtain some evidence for individual specific treatment effects that

differ from zero when using oracle model selection results. However, we cannot rule

out the possibility of no treatment effect heterogeneity after allowing for a modest

number of model selection mistakes. Thus, to draw strong conclusions about treat-
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Table 1
Testing the Null Hypothesis of No Treatment Effect Heterogeneity: Hadamard-Walsh Specification

Estimator W-statistic df p-value
PL 20.6884 9 0.0141
TU(1) 19.4059 10 0.0354
TU(2) 18.1018 10 0.0533
TU(3) 17.5105 10 0.0638
TU(4) 16.8746 10 0.0772
TU(5) 16.3060 10 0.0912
TU(6) 15.7466 10 0.1071
TU(7) 15.2801 10 0.1222
TU(8) 14.8188 10 0.1388
TU(9) 14.3024 10 0.1596
TU(10) 13.9031 10 0.1775

Note: This table presents results for testing the null hypothesis of no treatment effect
heterogeneity when the set of controls is constructed by taking all possible interactions
of the baseline dummy variables and augmenting with the Hadamard-Walsh basis as
described in the main text. We report the value of the Wald statistic (“W-statistic”),
degrees of freedom (“df”), and associated p-value (“p-value”). Results for testing this
hypothesis based on OLS and Post-Lasso estimates are provided in the first two rows
of the table. Rows labeled “TU(j)” correspond to TU with s̄ = j.

ment effect heterogeneity, one must believe that the initial model selection procedure

is very close to perfect in this example.

4. Application II : Heterogeneous Treatment Effects in Direct Mail

The targeting of individuals with appropriate interventions that induce preferred out-

comes is a relevant problem in various application areas including business, political

science and economics. In the field of marketing, such targeting has been the key

instrument of retailers that use direct mail as the focal intervention to inform and

persuade their customers to purchase from their catalogs. These catalogs are often

relatively expensive to produce and firms spend significant amounts in this endeavor.

Our data for this example comes from a large multi-product retailer that sells di-

rectly to consumers online but also via mail, phone and retail channels. The firm’s

budget for direct-mailed catalogs is over $120M and net sales per year are in excess of

$1.5B. The firm routinely runs experiments to evaluate the effectiveness of its catalog

mailing strategy. Typically, these experiments have two conditions (mail, no-mail)

that are randomized across customers. Our data focuses on one such experiment that

involved over 290,000 customers. The data also include a list of 486 descriptors of
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the individual customers. These descriptors include demographic characteristics (age,

income, gender, state), details of past promotional activity they may have received

as well as their past consumption behavior data including purchases, the timing of

such purchases, the number of orders in the past year, and the extent of their expen-

ditures with the firm. The design matrix in our analysis contains 2139 columns once

categorical variables are expanded.

In our analysis, we estimate the following simple specification of a model with

heterogeneous treatment effects:

yi = f0(di, xi, εi) = x′iξ0 + (di · xi)′γ0 + εi.

In the above, di is an indicator that a consumer has been randomly assigned to receive

a direct mail marketing instrument (a catalog), and the xi are customer characteris-

tics. yi are dollar expenditures by the customer over a 3-month horizon following the

mailing of the marketing instrument. We assume that (xi, εi)
n
i=1 are n i.i.d. draws,

having the same distribution as the generic pair of random variables (x, ε).

We assume that the firm is interested in evaluating a marketing strategy formed

from targeting individuals based on their individual-specific treatment effects versus

one of two simple baseline strategies - either mailing to no one or mailing to everyone.

A mailing strategy d̃ = d̃(x) assigns customers with characteristics x to either receive

the mailing or not. We adopt TU to provide a simple mechanism for the firm to

statistically evaluate the difference between two competing mailing strategies on the

basis of average expected profits. The average expected profit from implementing d̃ is

E[π(d̃)] = E
[
νf0

(
d̃(x), x, ε

)
− d̃(x)c

]
.

In the above quantity, the firm has a known margin (0 < ν < 1) that applies to

sales generated by its customers. For simplicity, we assume that the cost to the firm
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of targeting each consumer, c, is constant and known ex ante.10 Within the model, the

only remaining source of uncertainty are the unanticipated demand shocks ε, which

are only observed via outcomes and are assumed to be conditionally mean zero.

We examine two extremal mailing strategies where either no customers receive a

catalog (‘no-mailings’) by setting d̃(x) = 0 uniformly or a ‘blanket-mailing’ strategy

wherein all customers receive a catalog (i.e. d̃(x) = 1 for all x). The no-mailings

strategy expected profits are

E[π0] = E[νf0 (0, x, ε)] = νE[x′ξ0].

Similarly, the expected profit for the blanket mailing strategy can be written as

E[π1] = E[νf0(1, x, ε)− c] = νE[x′(ξ0 + γ0)]− c.

A sophisticated firm might be interested in optimizing the mailing strategy based

on expected consumer response.11 One simple, sensible mailing strategy would be to

mail to a consumer with characteristics x whenever the expected increment in profits

for that customer exceeds costs. The rule can be described by

d∗(x) = 1{ν(x′ξ0 + x′γ0)− ν(x′ξ0) > c} = 1{ν (x′γ0) > c}.

Using this strategy, we then have expected per consumer profit of

E[π∗] = E[νf0(d∗(x), x, ε)− cd∗(x)]

= νE[xξ0] + νE[(d∗(x) · x)′γ0]− cPr(d∗(x) = 1).

10A more general approach would be to write costs as functions of x. Implementing this approach would require

specific data about individual mailing costs which we currently do not have. We could also assume that costs are

drawn from some known distribution where the exact realization is unknown by the firm until after the mailings have

been sent out and calculate expected profits integrating over this cost distribution.
11See Athey and Wager (2017) and van der Laan and Luedtke (2016) for approaches to estimating and performing

inference for optimal treatment strategies.
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Next, compare the targeted strategy to the ‘blanket’ or ‘no-mailing’ strategies. The

difference in profit between the targeted and no-mailing strategies is

E[∆π∗0] = E [π∗]− E
[
π0
]

= νE[(d∗(x) · x)′γ0]− cPr(d∗(x) = 1).

Similary, the difference between the targeted and blanket strategies would be

E[∆π∗1] = E [π∗]− E
[
π1
]

= νE[(d∗(x)− 1) · x′γ0]− c(Pr(d∗(x) = 1)− 1).

Natural estimators exist for E[∆π∗0] and E[∆π∗1]. An estimator for E[∆π∗0] is

∆̂π∗0 =
ν

n

n∑
i=1

[
1{ν (x′iγ̂0) > c} (x′iγ̂0 − c/ν)

]
for some estimator γ̂0. Similarly, a natural estimator of E[∆π∗1] is

∆̂π∗1 =
ν

n

n∑
i=1

[
(1{ν (x′iγ̂0) > c} − 1) (x′iγ̂0 − c/ν)

]
for an estimator γ̂0. Under the sparsity assumptions on the true model maintained in

this paper and conventional regularity conditions, ∆̂π∗0 and ∆̂π∗1 will by asymptoti-

cally normal with standard error that can be readily estimated when γ0 is estimated

from the true model. Based on this observation, we can apply the TU approach to

conduct inference on potential profit improvements from targeting based on the rule

d∗(x) relative to the two simple baseline strategies.

In this example, we form estimates by first calculating a Lasso-based model selec-

tion and Post-Lasso estimator of the coefficients Ŝ0, (ξ̂PL, γ̂PL), using the procedure

described in detail in Appendix A. TU intervals for E[∆π∗0] and E[∆π∗1] are printed

in Table 2 for s̄ 6 10.12 The margin parameter is set to ν = 0.30 and the cost pa-
12Before estimation, variables with a small number of nonzero observations are excluded. In the first pass, variables

with 6 100 nonzero entries in the entire sample were eliminated. In the second pass, variables with corresponding

diagonal R term in the design matrix QR decomposition< 10−6 in either control or treated subsample were eliminated.
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rameter is set at c = 0.70 based on input from the firm. Also reported are OLS-based

estimates. Intervals are based on heteroskedasticity-consistent standard errors.

Table 2
Estimates for Average Profit Differential

Relative to no Mailing: E[∆π∗0] Relative to Blanket Mailing: E[∆π∗1]
Estimator Estimate S.E. Lower Upper Estimate S.E. Lower Upper
OLS 1.1514 0.0655 1.0229 1.2798 0.6332 0.0789 0.4785 0.7879
PL 0.6984 0.0441 0.6119 0.7849 0.1811 0.0497 0.0837 0.2784
TU(1) 0.6099 0.7960 0.0821 0.2905
TU(2) 0.6083 0.8063 0.0807 0.3001
TU(3) 0.6070 0.8131 0.0798 0.3076
TU(4) 0.6062 0.8188 0.0788 0.3132
TU(5) 0.6054 0.8269 0.0779 0.3205
TU(6) 0.6045 0.8323 0.0773 0.3261
TU(7) 0.6036 0.8375 0.0767 0.3309
TU(8) 0.6029 0.8430 0.0762 0.3361
TU(9) 0.6023 0.8476 0.0758 0.3401
TU(10) 0.6018 0.8514 0.0754 0.3437

Note: This table presents estimates of the average profit differential between the targeted mailing
strategy and the strategy that mails to no one, E[∆π∗0], and estimates of the average profit differential
between the targeted mailing strategy and the strategy that mails to everyone, E[∆π∗1]. OLS and Post-
Lasso estimates of the average profit differential and associated standard errors are provided in the
“Estimate” and “S.E.” columns in the first two rows. The “Lower” and “Upper” columns respectively
report the lower and upper bounds of 95% confidence intervals. Rows labeled “TU(j)” correspond to
TU with s̄ = j.

The TU intervals for E[∆π∗0] and E[∆π∗1] are robust to different assumptions

about the true underlying sparsity level s̄. Interestingly, the OLS-based intervals are

completely different from the TU intervals for every value of s̄. This difference is

likely due to a failure of OLS in this example. In the setting of the simulation study

below, we find that OLS intervals achieve poor coverage probabilities with coverages

as low as 0.00% in some settings. The poor performance of OLS in the simulation

study is due to biases arising from taking a nonlinear transformation of the estimated

coefficient vector and a failure of the standard delta method with a large number of

covariates.13 The OLS estimates seem to overstate both E[∆π∗0] and E[∆π∗1].

13Bias corrections for the delta method in settings with many covariates are described in Cattaneo et al. (2019).

For simplicity, we report the estimates and intervals which correspond to common practice.
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5. Simulation Study

In this section, we present a simulation study to demonstrate properties of TU in

finite samples. The simulation is designed based on the example in Section 4. We

generate data for each simulation replication as iid draws for i = 1, ..., n from

yi = ξ0
0 + x′iξ0 + diγ

0
0 + di · x′iγ0 + εi,

p = 2 + 2dim(xi) = 2(1 + k), wij ∼ N(0, 1) with corr(wij1 , wij2) = 0.8|j1−j2|,

xij = (wij − τj)1{wij > τj}, τj ∼ unif(0, 1.28) iid, di ∼ Bernoulli(0.5), εi ∼ N(0, 1),

(ξ0
0 , ξ
′
0) = c.25(1/

√
s0, (2/

√
s0)ι′s0/4, (2/

√
ns0)ι′s0/4, 0

′
k−s0/2)� (1, υ′),

(γ0
0 , γ

′
0) = c.25(1/(2

√
s0), (4/

√
ns0)ι′s0/4, (4/

√
s0)ι′s/4, 0

′
k−s0/2)� (1, υ′),

where c.25 is a constant that is chosen so that the population R2 of the regression of

yi onto (1, x′i, di, dix
′
i) is 0.25.14

Two simulation designs are based on varying p ∈ {202, 602} and setting s0 = 8.15 In

all simulations, n = 400. Estimates and intervals are constructed for three functionals:

(1) the value of a single coefficient (specifically [γ0]1, the first component of γ0), (2) an

individual treatment effect for a fixed hypothetical subject (with x∗ = .5ιdim(xi)), and

(3) the average per-person profit differential from a targeting rule based on estimated

individual specific treatment effects and a rule which treats no one (E[∆π∗0] defined

in Section 4).

We simulate 500 replications and present properties of several estimators:

1. True. Infeasible estimator based on OLS on the correct support.

2. All. Estimator based on OLS using all covariates.

3. Double. The post-double selection estimator as described in Belloni et al. (2014)
14ιm is an m × 1 vector of ones, 0m is an m × 1 vector of zeros, υ is a k × 1 vector with jth element given by

υj = (−1)j−1, and � denotes the Hadamard product.
15A supplementary appendix provides additional results with s0 ∈ {4, 16}.
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4. Lasso. Estimator based on Lasso.

– Standard errors computed using Lasso residuals.

5. PL. Estimator based on the Post-Lasso of Belloni and Chernozhukov (2013).

– Standard errors computed using Post-Lasso residuals.

6. LCV. Estimator based on Lasso with penalty chosen by 10-fold cross validation.

– Standard errors computed using Lasso residuals.

7. ZB. Confidence intervals based on inverting the hypothesis test proposed in Zhu

and Bradic (2016).

8. TU(1). Targeted undersmoothing with s = 1 using Algorithm 1.

– Initial model Ŝ0 selected using method described in Appendix A.

9. TU(10). Targeted undersmoothing with s = 10 using Algorithm 1.

– Initial model Ŝ0 selected using method described in Appendix A.

Further details about the estimators considered are provided in Appendix A.

Performance measures of the nine procedures, including estimates of bias, standard

deviation, root mean-square error (RMSE), coverage probability for a 95% interval,

and corresponding interval length are printed in Tables 3-4 and Figures 1-2. The

figures provide average interval lengths and coverage probabilities along the 10-steps

of the TU forward selection path produced in the simulation.

When p < n, a simple feasible option is to estimate the full-model without any

model selection (‘All’). In our simulation which is based on a linear model with con-

ditional mean zero errors, this approach clearly results in small bias for the individual

regression parameter and for the individual-specific treatment effect. The cost of es-

timating the full model is decreased estimation precision as evidenced by relatively

large standard deviation, RMSE, and interval lengths relative to the other point esti-

mators. Importantly, for the estimation of profit differential functional, the estimator

is dominated by bias due to this functional’s nonlinear dependence on the model pa-

rameters. This bias then results in extremely poor coverage properties for the true

profit differential. This behavior can be viewed as a failure of the delta-method in
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Table 3. Simulation Results: n = 400, p = 202, s0 = 8

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias 0.04 0.01 0.84 -0.09 -0.08 -0.14
Std. Dev. 0.63 0.74 0.67 0.02 0.18 0.55
RMSE 0.63 0.74 1.07 0.09 0.19 0.57
Coverage 0.94 0.92 0.67 0.02 0.01 0.64 0.79 0.99 1.00
Int. Length 2.25 2.61 2.33 0.04 0.03 1.51 1.22 2.12 4.25

B. TE
Bias 0.02 0.01 0.12 0.13 0.13
Std. Dev. 0.21 1.57 0.12 0.27 0.45
RMSE 0.21 1.57 0.17 0.30 0.47
Coverage 0.94 0.92 0.87 0.76 0.97 0.91 0.99 1.00
Int. Length 0.78 5.79 0.56 0.58 1.88 19.57 2.16 6.72

C. PI
Bias 0.02 0.31 -0.09 -0.07 -0.02
Std. Dev. 0.10 0.10 0.11 0.11 0.11
RMSE 0.10 0.33 0.14 0.13 0.11
Coverage 0.95 0.06 0.86 0.87 0.90 0.95 1.00
Int. Length 0.40 0.36 0.44 0.43 0.39 0.50 0.74

Note: This table presents point estimation and inferential results from a simulation designed to mimic
the empirical example in Section 4 in a setting with p < n. Results are provided for estimation and
inference on a pre-specified coefficient of interest (‘RegCoef’), an individual specific treatment effect
(‘TE’), and the difference in expected profits between a targeted and non-targeted treatment strategy
as defined in Section 4 (‘PI’). Coverage and interval length report coverage and average length of 95%
intervals.

moderate or high-dimensional models; see Cattaneo et al. (2019).

Next examine the performance of ‘Lasso’ and ‘PL’. The Lasso penalty parameter in

this case is set in a manner that theoretically provides Lasso with an optimal rate of

convergence and guarantees that the ŝ = O(1)s0. We conduct inference in these cases

by relying on oracle-type results that ignore the first step model selection. In general,

the resulting estimators are competitive in terms of RMSE for all objects considered

across all different designs. However, their bias also tends to be comparable to their

standard deviation due to regularization and model selection mistakes. Oracle-style

approximations do not account explicitly for this bias and as a result do not achieve

correct coverage rates. Coverage for these procedures is generally far from the nominal

95% and is, in some cases, 0%.

The ‘LCV’ estimator is similar to ‘Lasso’ and ‘PL’ in that it applies oracle-style

inference after selecting a model from the data. The difference is that cross-validation
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Figure 1. Simulation Results: n = 400, p = 202, s0 = 8

Note: This figure provides coverage and average length of 95% intervals for 10 steps in the TU

path starting from the baseline Post-Lasso model in the p < n simulation. Results are provided for

estimation and inference on a pre-specified coefficient of interest (‘RegCoef’), an individual specific

treatment effect (‘TE’), and the difference in expected profits between a targeted and non-targeted

treatment strategy as defined in Section 4 (‘PI’).

tends to produce penalty parameters that are much smaller than the theoretically

motivated values used in ‘Lasso’ and ‘PL’. This reduction in the penalty parameter

allows extra variables to enter the model relative to the case where the larger penalty

parameters are used. In this sense, such a procedure can also be thought of as an

undersmoothing procedure, though the “undersmoothing” is targeted toward model

fit. In these simulations, ‘LCV’ tends to produce estimates of the regression coefficient

and individual-specific treatment effect with bias similar to that obtained with ‘Lasso’

and ‘PL’, though ‘LCV’ also tends to have a larger standard deviation than these

estimators as well. The similar bias and larger standard deviation results in ‘LCV’

tending to be outperformed in terms of RMSE for these objects but also results
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Table 4. Simulation Results: n = 400, p = 602, s0 = 8

True All Double Lasso PL LCV ZB TU(1) TU(10)
A. RegCoef

Bias -0.03 0.78 -0.09 -0.08 -0.15
Std. Dev. 0.65 0.68 0.01 0.12 0.43
RMSE 0.65 1.03 0.09 0.15 0.45
Coverage 0.93 0.72 0.02 0.01 0.55 0.77 1.00 1.00
Int. Length 2.25 2.34 0.02 0.03 1.13 1.26 2.04 4.68

B. TE
Bias -0.01 0.11 0.13 0.15
Std. Dev. 0.22 0.12 0.25 0.44
RMSE 0.22 0.17 0.28 0.46
Coverage 0.93 0.87 0.74 0.99 0.98 1.00 1.00
Int. Length 0.77 0.56 0.58 2.27 24.82 2.66 9.98

C. PI
Bias 0.01 -0.09 -0.08 -0.04
Std. Dev. 0.10 0.11 0.11 0.11
RMSE 0.10 0.15 0.13 0.12
Coverage 0.95 0.85 0.88 0.89 0.95 1.00
Int. Length 0.40 0.44 0.43 0.40 0.51 0.85

Note: This table presents point estimation and inferential results from a simulation designed to mimic
the empirical example in Section 4 in a setting with p > n. Results are provided for estimation and
inference on a pre-specified coefficient of interest (‘RegCoef’), an individual specific treatment effect
(‘TE’), and the difference in expected profits between a targeted and non-targeted treatment strategy
as defined in Section 4 (‘PI’). Coverage and interval length report coverage and average length of 95%
confidence intervals. The column ‘All’ is included and blank to emphasize that using all regressors is
infeasible in this scenario.

in better coverage of the ‘LCV’ intervals relative to the ‘Lasso’ or ‘PL’ intervals.

For the profit differential, ‘LCV’ is generally less-biased than ‘Lasso’ and ‘PL’ while

having a similar standard deviation. Thus, ‘LCV’ is competitive in terms of RMSE

for this object. However, sufficient bias remains for coverage of intervals to remain

substantively distorted.

Next, we turn to ‘Double’ which, in terms of our objects of interest, is only readily

available for inference about a single regression coefficient. We see that the ‘Dou-

ble’ point estimator has a large bias which translates into relatively poor coverage

properties in our simulation.16 We conjecture that this behavior may be improved by

considering double machine learning as in Chernozhukov et al. (2016). We note that

TU offers an approach to gauging the sensitivity of conclusions to model selection

mistakes and could be applied directly to semiparametric targets using orthogonal

16In the appendix, we consider the s0 = 4 case in which ‘Double’ delivers performance comparable to the infeasible

oracle.
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Figure 2. Simulation Results: n = 400, p = 602, s0 = 8

Note: This figure provides coverage and average length of 95% intervals for 10 steps in the TU

path starting from the baseline Post-Lasso model in the p > n simulation. Results are provided for

estimation and inference on a pre-specified coefficient of interest (‘RegCoef’), an individual specific

treatment effect (‘TE’), and the difference in expected profits between a targeted and non-targeted

treatment strategy as defined in Section 4 (‘PI’).

estimating equations as in Belloni et al. (2014) or Chernozhukov et al. (2016). We do

not pursue this for brevity.

The ‘ZB’ method does not achieve 95% coverage for the regression coefficient ζ0,1

in any of our simulations. The ‘ZB’ method gives better coverage probabilities for the

individual treatment effect with near or above 95% coverage in all simulation designs.

However, the ‘ZB’ intervals for the individual specific effects are very long.17

Finally, we examine the TU approach. For TU, we set the initial model and point

estimates to be those underlying the ‘PL’ results. An interesting feature of the pre-

sented simulations is that ‘TU(1)’ achieves nearly correct coverage uniformly across

17Looking at the expanded set of simulations in the Supplementary Appendix, we also see that the lengths of the

‘ZB’ confidence intervals grow considerably with the underlying value of s0.
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the simulation designs - achieving higher than 90% coverage in every design. While

not reported in the table, ‘TU(2)’ achieves higher than 95% coverages in all cases.

We see the inherent conservativeness in sensitivity analysis considering a large class

of models in that ‘TU(10)’ uniformly has nearly 100% coverage in all cases. Impor-

tantly, the good coverage properties are uniform across all designs and all parameters

considered. As must be the case, the intervals produced by the TU approach are rel-

atively wide and become wider as one allows for more selection mistakes. The losses

relative to the infeasible optimum are modest for small s̄, and the intervals are still

potentially informative even in the most extreme case we consider.

Overall, we believe these results are favorable to the TU approach. Of the considered

feasible alternatives, it is the only procedure that produces uniformly good coverage

properties. The cost is increased imprecision about what conclusions can be drawn

from the data. This increase in imprecision seems honest as it reflects the potential

for substantive biases resulting from model selection mistakes. The procedure is also

anchored on initial point estimates that have relatively good properties for estimating

the parameters of interest.

Appendix A: Implementation Details

This appendix additional implementation details for computations performed in the

main text.18

A.1. Model Selection Implementation

In this paper, the procedure for selecting Ŝ0 for models defined by

yi = x′iξ0 + (di · xi)′γ0 + εi
18There are many choices about how to implement the different procedures, e.g. whether to split into treatment

and control observations and which penalty parameters to use. The choices below were based on initial simulations

where they seemed to produce the most favorable performance for the non-TU approaches.
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as in Sections 3–5 is given in Algorithm A1 below.

Algorithm A1. Initial model selection in heterogeneous effects linear model.

Step 1. Divide the sample into two sets: A0 = {i : di = 0} and A1 = {i : di = 1}.

Step 2. Within each sample, demean the observations.

Step 3. Using the demeaned observations, run the modified heteroskedastic Lasso

regression (described in Algorithm A2 in Appendix A.3) of yi on xi over subset A0

and let Ŝ0,0 be the set of covariates selected. Again using the demeaned observations,

run the modified heteroskedastic Lasso regression of yi on xi over subset A1 and let

Ŝ0,1 be the set of covariates selected.

Step 4. The final model Ŝ0 consists of the constant term, the main effect of di, the

ξ0 components corresponding to covariate indexes in Ŝ0,0 ∪ Ŝ0,1, and the interaction

terms (γ0 terms) corresponding to covariate indexes in Ŝ0,0 ∪ Ŝ0,1.

A.2. Additional Simulation Details

In the simulation study, all standard errors are computed using conventional het-

eroskedasticity consistent standard errors (e.g. White (1980)) using the estimated

residuals indicated above. We give details on implementation specifics in the follow-

ing paragraph.

For ‘True,’ ‘All,’ and ‘Double,’ we directly estimate the linear model defined in

Section 5 using only the variables with non-zero coefficients (‘True’), all the variables

(‘All’), or variables selected by Lasso (‘Double’). For ‘Double,’ we apply Belloni et al.

(2014) with a minor modification to select variables. Specifically, we implement the

relevant Lasso regressions from Belloni et al. (2014) using the modified heteroskedastic

Lasso outlined in Appendix A.3. To implement ‘Lasso’ and ‘PL,’ we use Algorithm

A1 to select a model. ‘PL’ then obtains final estimates by re-estimating coefficients by

OLS with only the variables selected by Lasso. For ‘LCV,’ we use a modification of the
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procedure in Appendix A.1, where 10-fold cross-validation within each subset is used

to choose the tuning parameter to use in that subset. We then apply the conventional

Lasso within each subset based on these estimated tuning parameters. For these

methods, we then can obtain estimates and standard errors for the functionals of

interest in the obvious manner. We implement ‘ZB’ using the method of inference for

dense linear functionals of a parameter vector from Zhu and Bradic (2016). Finally, the

PL model serves as our initial model when applying TU. We apply TU for s̄ = 1, ..., 10.

A.3. Lasso Implementation

The implementation of Lasso in this paper is performed according to Algorithm A2.

Algorithm A2. Modified Heteroskedastic Lasso: Marginal Correlation-Based Initial

Penalty Loadings. The modified heteroskedastic Lasso is identical to Belloni et al.

(2012) with a small modification. Belloni et al. (2012) relies on ‘initial penalty load-

ings,’ which require preliminary estimates of individual specific residuals. To obtain

these initial estimates of residuals, einitiali , we regress yi on the 5 covariates with the

highest marginal correlation with yi and use the resulting residuals. This approach

can be shown to be formally valid when the number of covariates with high marginal

correlations to yi used is bounded by a constant which does not depend on n. In

contrast, note that Belloni et al. (2012) suggest einitiali = yi − ȳ. Finally, the penalty

loadings are updated with one iteration as described in Belloni et al. (2012).
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